Video-Text-to-Text
Safetensors
custom_code
File size: 8,117 Bytes
75c67a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import io
import os
import warnings
import logging
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss

from torch.cuda.amp import autocast as autocast

from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean
from .modeling_qformer import build_qformer

logger = logging.getLogger(__name__)

from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor
from transformers import AutoConfig, PreTrainedModel
from .model_config import VideoChat2Config


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


def freeze_module(module):
    for _, param in module.named_parameters():
        param.requires_grad = False
    module = module.eval()
    module.train = disabled_train
    return module


class LLMConfig(AutoConfig):
    model_type = ""


class BaseMLLM(PreTrainedModel):
    config_class = VideoChat2Config
    def __init__(self, config):
        # super().__init__(config)
        self.model_config = config.model_config
        config.model_config = None
        super().__init__(config)
        self.build_vision_encoder()
        self.build_llm()
        self.build_bridge()
        self.build_loss()
        # NOTE place it after freeze llm
        for n, p in self.named_parameters():
            if p.requires_grad:
                logger.info(f'{n} requires_grad')
        
    
    def build_vision_encoder(self):
        # load pretrained internvideo2-1b here, simplified as it receives no args
        # note that we haven't load the internvideo pretrained version
        if 'internvideo2' in self.model_config.vision_encoder.name.lower():
            encoder_name = self.model_config.vision_encoder.name
            logger.info(f"Build vision_encoder: {encoder_name}")
            if encoder_name == 'internvideo2-1B':
                self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)
            else:
                raise ValueError(f"Not implemented: {encoder_name}")
        else:
            raise NotImplementedError(self.model_config.vision_encoder.name)

        if self.model_config.vision_encoder.vit_add_ln:
            self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
        else:
            self.vision_layernorm = nn.Identity()

        self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)

        if self.freeze_vision_encoder:
            logger.info("freeze vision encoder")
            freeze_module(self.vision_encoder)
            freeze_module(self.vision_layernorm)


    def build_bridge(self):
        # ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
        self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
        # LM to ViT: 6656 -> 1792
        self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
        
        if 'qformer' in self.model_config.bridge.name.lower():
            from transformers import BertTokenizer
            self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
            self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
            self.qformer_tokenizer.padding_side = "left"
            if self.model_config.bridge.name == 'qformer':
                self.qformer, self.query_tokens = build_qformer(
                        self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
                        qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
                        qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
                        qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
                )
            self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
            self.qformer.cls = None
            self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
            if self.model_config.bridge.extra_num_query_token > 0:
                logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
                self.extra_query_tokens = nn.Parameter(
                    torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
                )
            
            self.freeze_bridge = self.model_config.get("freeze_bridge", False)
            if self.freeze_bridge:
                logger.info("freeze bridge")
                freeze_module(self.qformer)
                self.query_tokens.requires_grad = False

    def build_llm(self):
        self.lm_name = self.model_config.llm.name
        if self.model_config.llm.name == 'mistral_7b':
            from transformers import AutoModelForCausalLM
            config = AutoConfig.from_pretrained(
                self.model_config.llm.pretrained_llm_path,
                torch_dtype=torch.bfloat16,
                token=token,
                # attn_implementation="flash_attention_2",
            )
            self.lm = AutoModelForCausalLM.from_config(config)
        elif self.model_config.llm.name == 'internlm_20b':
            from transformers import AutoModelForCausalLM
            self.lm = AutoModelForCausalLM.from_pretrained(
                self.model_config.llm.pretrained_llm_path,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
            )
            self.lm.gradient_checkpointing = True
            self.lm._set_gradient_checkpointing()
        elif self.model_config.llm.name == 'internlm2_5_7b':
            from transformers import AutoModelForCausalLM
            config = AutoConfig.from_pretrained(
                self.model_config.llm.pretrained_llm_path,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
            )
            self.lm = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
        else:
            raise NotImplementedError(self.model_config.llm.name)

        self.freeze_llm = self.model_config.get("freeze_llm", True)
        logger.info(f'freeze_llm: {self.freeze_llm}')
        if self.freeze_llm:
            logger.info("freeze llm")
            freeze_module(self.lm)
        
        if self.model_config.llm.use_lora:
            self.use_lora = True
            from peft import get_peft_model, LoraConfig, TaskType
            logger.info("Use lora")
            if "internlm" in self.model_config.llm.name:
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3']
                )
            else:
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
                                    "gate_proj", "up_proj", "down_proj", "lm_head"]
                )
                
            self.lm = get_peft_model(self.lm, peft_config)
            self.lm.enable_input_require_grads()
            self.lm.print_trainable_parameters()
        else:
            self.use_lora = False


    def build_loss(self):
        self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False)
        if self.use_vision_regression_loss:
            self.image_loss_fct = MSELoss()
        
    @property
    def dtype(self):
        return self.lm.dtype


    @property
    def device(self):
        return self.lm.device