Video-Text-to-Text
Safetensors
custom_code
File size: 9,185 Bytes
6575e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1e3df
 
 
 
a2827bd
 
be1e3df
a2827bd
be1e3df
6575e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
license: mit
pipeline_tag: video-text-to-text
extra_gated_prompt: >-
  You agree to not use the model to conduct experiments that cause harm to human
  subjects.
extra_gated_fields:
  Name: text
  Company/Organization: text
  Country: text
  E-Mail: text
---

# InternVideo2-Chat-8B-InternLM2.5

[\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2)   [\[πŸ“œ Tech Report\]](https://arxiv.org/abs/2403.15377) 

To further enrich the semantics embedded in **InternVideo2** and improve its user-friendly in human communications, we tune InternVideo2 by incorporating it into a VideoLLM with a LLM and a video BLIP. We employ the progressive learning scheme in [VideoChat](https://arxiv.org/abs/2311.17005) by using InternVideo2 as the video encoder and train a video blip for
communicating with open-sourced LLM. In training, the video encoder will be updated. Detailed training recipts are in [VideoChat](https://arxiv.org/abs/2311.17005). This model has HD training. 

The BaseLLM of this model is [InternLM2.5-7B](https://huggingface.co/internlm/internlm2_5-7b-chat-1m) with 1M long context window. 

## πŸ“ˆ Performance

| Model |  MVBench | VideoMME(w/o sub)| 
| ---   |  ---     |   ---            |
|[InternVideo2-Chat-8B](https://huggingface.co/OpenGVLab/InternVideo2-Chat-8B)| 60.3 | 41.9    |
|[InternVideo2-Chat-8B-HD](https://huggingface.co/OpenGVLab/InternVideo2_chat_8B_HD) | 65.4 | 46.1|
|InternVideo2-Chat-8B-HD-F16 | 67.5 | 49.4|
|[InternVideo2-Chat-8B-InternLM](https://huggingface.co/OpenGVLab/InternVideo2_Chat_8B_InternLM2_5)| 61.9| 49.1|

## πŸš€ How to use the model

1. make sure to have `transformers >= 4.38.0, peft==0.5.0`

Install the requisite Python packages from [pip_requirements](https://huggingface.co/OpenGVLab/InternVideo2_chat_8B_HD/blob/main/requirements.txt) 
   
2. Inference with Video input

```Python
import os
import torch

from transformers import AutoTokenizer, AutoModel

tokenizer =  AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
    trust_remote_code=True,
    use_fast=False,)
if torch.cuda.is_available():
  model = AutoModel.from_pretrained(
      'OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
      torch_dtype=torch.bfloat16,
      trust_remote_code=True).cuda()
else:
  model = AutoModel.from_pretrained(
      'OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
      torch_dtype=torch.bfloat16,
      trust_remote_code=True)


from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import numpy as np
import decord
from decord import VideoReader, cpu
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms import PILToTensor
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
decord.bridge.set_bridge("torch")

def get_index(num_frames, num_segments):
    seg_size = float(num_frames - 1) / num_segments
    start = int(seg_size / 2)
    offsets = np.array([
        start + int(np.round(seg_size * idx)) for idx in range(num_segments)
    ])
    return offsets


def load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=4, padding=False):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    num_frames = len(vr)
    frame_indices = get_index(num_frames, num_segments)

    mean = (0.485, 0.456, 0.406)
    std = (0.229, 0.224, 0.225)

    transform = transforms.Compose([
        transforms.Lambda(lambda x: x.float().div(255.0)),
        transforms.Normalize(mean, std)
    ])

    frames = vr.get_batch(frame_indices)
    frames = frames.permute(0, 3, 1, 2)

    if padding:
        frames = HD_transform_padding(frames.float(), image_size=resolution, hd_num=hd_num)
    else:
        frames = HD_transform_no_padding(frames.float(), image_size=resolution, hd_num=hd_num)

    frames = transform(frames)
    # print(frames.shape)
    T_, C, H, W = frames.shape

    sub_img = frames.reshape(
        1, T_, 3, H//resolution, resolution, W//resolution, resolution
    ).permute(0, 3, 5, 1, 2, 4, 6).reshape(-1, T_, 3, resolution, resolution).contiguous()

    glb_img = F.interpolate(
        frames.float(), size=(resolution, resolution), mode='bicubic', align_corners=False
    ).to(sub_img.dtype).unsqueeze(0)

    frames = torch.cat([sub_img, glb_img]).unsqueeze(0)

    if return_msg:
        fps = float(vr.get_avg_fps())
        sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
        # " " should be added in the start and end
        msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
        return frames, msg
    else:
        return frames

def HD_transform_padding(frames, image_size=224, hd_num=6):
    def _padding_224(frames):
        _, _, H, W = frames.shape
        tar = int(np.ceil(H / 224) * 224)
        top_padding = (tar - H) // 2
        bottom_padding = tar - H - top_padding
        left_padding = 0
        right_padding = 0

        padded_frames = F.pad(
            frames,
            pad=[left_padding, right_padding, top_padding, bottom_padding],
            mode='constant', value=255
        )
        return padded_frames

    _, _, H, W = frames.shape
    trans = False
    if W < H:
        frames = frames.flip(-2, -1)
        trans = True
        width, height = H, W
    else:
        width, height = W, H

    ratio = width / height
    scale = 1
    while scale * np.ceil(scale / ratio) <= hd_num:
        scale += 1
    scale -= 1
    new_w = int(scale * image_size)
    new_h = int(new_w / ratio)

    resized_frames = F.interpolate(
        frames, size=(new_h, new_w),
        mode='bicubic',
        align_corners=False
    )
    padded_frames = _padding_224(resized_frames)

    if trans:
        padded_frames = padded_frames.flip(-2, -1)

    return padded_frames

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
        best_ratio_diff = float('inf')
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            if ratio_diff < best_ratio_diff:
                best_ratio_diff = ratio_diff
                best_ratio = ratio
            elif ratio_diff == best_ratio_diff:
                if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                    best_ratio = ratio
        return best_ratio


def HD_transform_no_padding(frames, image_size=224, hd_num=6, fix_ratio=(2,1)):
    min_num = 1
    max_num = hd_num
    _, _, orig_height, orig_width = frames.shape
    aspect_ratio = orig_width / orig_height

    # calculate the existing video aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    if fix_ratio:
        target_aspect_ratio = fix_ratio
    else:
        target_aspect_ratio = find_closest_aspect_ratio(
            aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the frames
    resized_frame = F.interpolate(
        frames, size=(target_height, target_width),
        mode='bicubic', align_corners=False
    )
    return resized_frame

video_path = "yoga.mp4"
# sample uniformly 8 frames from the video
video_tensor = load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=6)
video_tensor = video_tensor.to(model.device)

chat_history = []
response, chat_history = model.chat(tokenizer, '', 'Describe the video step by step',instruction= "Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.\n", media_type='video', media_tensor=video_tensor, chat_history= chat_history, return_history=True,generation_config={'do_sample':False,'max_new_tokens':512,})
print(response) 
```

## ✏️ Citation
If this work is helpful for your research, please consider citing InternVideo and VideoChat.

```
@article{wang2024internvideo2,
  title={Internvideo2: Scaling video foundation models for multimodal video understanding},
  author={Wang, Yi and Li, Kunchang and Li, Xinhao and Yu, Jiashuo and He, Yinan and Wang, Chenting and Chen, Guo and Pei, Baoqi and Zheng, Rongkun and Xu, Jilan and Wang, Zun and others},
  journal={arXiv preprint arXiv:2403.15377},
  year={2024}
}

@article{li2023videochat,
  title={Videochat: Chat-centric video understanding},
  author={Li, KunChang and He, Yinan and Wang, Yi and Li, Yizhuo and Wang, Wenhai and Luo, Ping and Wang, Yali and Wang, Limin and Qiao, Yu},
  journal={arXiv preprint arXiv:2305.06355},
  year={2023}
}
```