File size: 51,344 Bytes
d2aae43
85c27b9
 
 
d2aae43
 
0245eac
d2aae43
 
 
 
 
 
 
 
85c27b9
 
d2aae43
 
 
 
 
 
 
 
 
 
 
 
85c27b9
d2aae43
 
 
 
 
 
 
 
 
 
 
 
 
85c27b9
 
 
d2aae43
 
85c27b9
 
 
d2aae43
 
85c27b9
d2aae43
 
 
 
 
 
0245eac
 
7b3ea75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0245eac
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
 
 
 
 
 
 
 
 
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
94347da
0245eac
 
d2aae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c27b9
d2aae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1f6d4
 
 
 
 
d2aae43
dc7fe99
 
d2aae43
dc7fe99
d2aae43
ee6d5e3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
---
inference: false
language:
- ar
library_name: sentence-transformers
tags:
- mteb
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
datasets:
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
  sentences:
  - رجل يقدم عرضاً
  - هناك رجل بالخارج قرب الشاطئ
  - رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
  sentences:
  - السرير قذر.
  - رجل يضحك أثناء غسيل الملابس
  - الرجل على القمر
- source_sentence: الفتيات بالخارج
  sentences:
  - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
  - فتيان يركبان في جولة متعة
  - >-
    ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة
    تتحدث إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
  sentences:
  - >-
    رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
    حمراء مع الماء في الخلفية.
  - كتاب القصص مفتوح
  - رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
  sentences:
  - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
  - رجل يستلقي على وجهه على مقعد في الحديقة.
  - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: Omartificial-Intelligence-Space/Arabic-labse-Matryoshka
  results:
  - dataset:
      config: ar
      name: MTEB MIRACLRetrievalHardNegatives (ar)
      revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
      split: dev
      type: mteb/miracl-hard-negatives
    metrics:
    - type: main_score
      value: 18.836
    task:
      type: Retrieval
  - dataset:
      config: ara-ara
      name: MTEB MLQARetrieval (ara-ara)
      revision: 397ed406c1a7902140303e7faf60fff35b58d285
      split: test
      type: facebook/mlqa
    metrics:
    - type: main_score
      value: 61.582
    task:
      type: Retrieval
  - dataset:
      config: ar
      name: MTEB MintakaRetrieval (ar)
      revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
      split: test
      type: jinaai/mintakaqa
    metrics:
    - type: main_score
      value: 14.585
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB SadeemQuestionRetrieval (default)
      revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9
      split: test
      type: sadeem-ai/sadeem-ar-eval-retrieval-questions
    metrics:
    - type: main_score
      value: 57.653
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB BIOSSES (default)
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
      split: test
      type: mteb/biosses-sts
    metrics:
    - type: cosine_pearson
      value: 76.46793440999714
    - type: cosine_spearman
      value: 76.66439745271298
    - type: euclidean_pearson
      value: 76.52075972347127
    - type: euclidean_spearman
      value: 76.66439745271298
    - type: main_score
      value: 76.66439745271298
    - type: manhattan_pearson
      value: 76.68001857069733
    - type: manhattan_spearman
      value: 76.73066402288269
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB SICK-R (default)
      revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
      split: test
      type: mteb/sickr-sts
    metrics:
    - type: cosine_pearson
      value: 79.67657890693198
    - type: cosine_spearman
      value: 77.03286420274621
    - type: euclidean_pearson
      value: 78.1960735272073
    - type: euclidean_spearman
      value: 77.032855497919
    - type: main_score
      value: 77.03286420274621
    - type: manhattan_pearson
      value: 78.25627275994229
    - type: manhattan_spearman
      value: 77.00430810589081
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS12 (default)
      revision: a0d554a64d88156834ff5ae9920b964011b16384
      split: test
      type: mteb/sts12-sts
    metrics:
    - type: cosine_pearson
      value: 83.94288954523996
    - type: cosine_spearman
      value: 79.21432176112556
    - type: euclidean_pearson
      value: 81.21333251943913
    - type: euclidean_spearman
      value: 79.2152067330468
    - type: main_score
      value: 79.21432176112556
    - type: manhattan_pearson
      value: 81.16910737482634
    - type: manhattan_spearman
      value: 79.08756466301445
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS13 (default)
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
      split: test
      type: mteb/sts13-sts
    metrics:
    - type: cosine_pearson
      value: 77.48393909963059
    - type: cosine_spearman
      value: 79.54963868861196
    - type: euclidean_pearson
      value: 79.28416002197451
    - type: euclidean_spearman
      value: 79.54963861790114
    - type: main_score
      value: 79.54963868861196
    - type: manhattan_pearson
      value: 79.18653917582513
    - type: manhattan_spearman
      value: 79.46713533414295
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS14 (default)
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
      split: test
      type: mteb/sts14-sts
    metrics:
    - type: cosine_pearson
      value: 78.51596313692846
    - type: cosine_spearman
      value: 78.84601702652395
    - type: euclidean_pearson
      value: 78.55199809961427
    - type: euclidean_spearman
      value: 78.84603362286225
    - type: main_score
      value: 78.84601702652395
    - type: manhattan_pearson
      value: 78.52780170677605
    - type: manhattan_spearman
      value: 78.77744294039178
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS15 (default)
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
      split: test
      type: mteb/sts15-sts
    metrics:
    - type: cosine_pearson
      value: 84.53393478889929
    - type: cosine_spearman
      value: 85.60821849381648
    - type: euclidean_pearson
      value: 85.32813923250558
    - type: euclidean_spearman
      value: 85.6081835456016
    - type: main_score
      value: 85.60821849381648
    - type: manhattan_pearson
      value: 85.32782097916476
    - type: manhattan_spearman
      value: 85.58098670898562
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS16 (default)
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
      split: test
      type: mteb/sts16-sts
    metrics:
    - type: cosine_pearson
      value: 77.00196998325856
    - type: cosine_spearman
      value: 79.930951699069
    - type: euclidean_pearson
      value: 79.43196738390897
    - type: euclidean_spearman
      value: 79.93095112410258
    - type: main_score
      value: 79.930951699069
    - type: manhattan_pearson
      value: 79.33744358111427
    - type: manhattan_spearman
      value: 79.82939266539601
    task:
      type: STS
  - dataset:
      config: ar-ar
      name: MTEB STS17 (ar-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 81.60289529424327
    - type: cosine_spearman
      value: 82.46806381979653
    - type: euclidean_pearson
      value: 81.32235058296072
    - type: euclidean_spearman
      value: 82.46676890643914
    - type: main_score
      value: 82.46806381979653
    - type: manhattan_pearson
      value: 81.43885277175312
    - type: manhattan_spearman
      value: 82.38955952718666
    task:
      type: STS
  - dataset:
      config: ar
      name: MTEB STS22 (ar)
      revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 49.58293768761314
    - type: cosine_spearman
      value: 57.261888789832874
    - type: euclidean_pearson
      value: 53.36549109538782
    - type: euclidean_spearman
      value: 57.261888789832874
    - type: main_score
      value: 57.261888789832874
    - type: manhattan_pearson
      value: 53.06640323833928
    - type: manhattan_spearman
      value: 57.05837935512948
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STSBenchmark (default)
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
      split: test
      type: mteb/stsbenchmark-sts
    metrics:
    - type: cosine_pearson
      value: 81.43997935928729
    - type: cosine_spearman
      value: 82.04996129795596
    - type: euclidean_pearson
      value: 82.01917866996972
    - type: euclidean_spearman
      value: 82.04996129795596
    - type: main_score
      value: 82.04996129795596
    - type: manhattan_pearson
      value: 82.03487112040936
    - type: manhattan_spearman
      value: 82.03774605775651
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB SummEval (default)
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
      split: test
      type: mteb/summeval
    metrics:
    - type: cosine_pearson
      value: 32.113475997147674
    - type: cosine_spearman
      value: 32.17194233764879
    - type: dot_pearson
      value: 32.113469728827255
    - type: dot_spearman
      value: 32.174771315355386
    - type: main_score
      value: 32.17194233764879
    - type: pearson
      value: 32.113475997147674
    - type: spearman
      value: 32.17194233764879
    task:
      type: Summarization
- name: SentenceTransformer based on sentence-transformers/LaBSE
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.7269177710249681
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7225258779395222
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7259261785622463
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7210463582530393
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7259567884235211
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.722525823788783
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7269177712136122
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7225258771129475
      name: Spearman Dot
    - type: pearson_max
      value: 0.7269177712136122
      name: Pearson Max
    - type: spearman_max
      value: 0.7225258779395222
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8143867576376295
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8205044914629483
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8203365887013151
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8203816698535976
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8201809453496319
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8205044914629483
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8143867541070537
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8205044914629483
      name: Spearman Dot
    - type: pearson_max
      value: 0.8203365887013151
      name: Pearson Max
    - type: spearman_max
      value: 0.8205044914629483
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.7268389724271859
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7224359411000278
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7241418669615103
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7195408311833029
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7248184919191593
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7212936866178097
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7252522928016701
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7205040482865328
      name: Spearman Dot
    - type: pearson_max
      value: 0.7268389724271859
      name: Pearson Max
    - type: spearman_max
      value: 0.7224359411000278
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8143448965624136
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8211700903453509
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8217448619823571
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8216016599665544
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8216413349390971
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.82188122418776
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8097020064483653
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8147306090545295
      name: Spearman Dot
    - type: pearson_max
      value: 0.8217448619823571
      name: Pearson Max
    - type: spearman_max
      value: 0.82188122418776
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.7283468617741852
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7264294106954872
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7227711798003426
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.718067982079232
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7251492361775083
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7215068115809131
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7243396991648858
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7221390873398206
      name: Spearman Dot
    - type: pearson_max
      value: 0.7283468617741852
      name: Pearson Max
    - type: spearman_max
      value: 0.7264294106954872
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8075613785257986
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8159258089804861
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8208711370091426
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8196747601014518
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8210210137439432
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8203004500356083
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7870611647231145
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7874848213991118
      name: Spearman Dot
    - type: pearson_max
      value: 0.8210210137439432
      name: Pearson Max
    - type: spearman_max
      value: 0.8203004500356083
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.7102082520621849
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7103917869311991
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7134729607181519
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.708895102058259
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7171545288118942
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7130380237150746
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6777774738547628
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6746474823963989
      name: Spearman Dot
    - type: pearson_max
      value: 0.7171545288118942
      name: Pearson Max
    - type: spearman_max
      value: 0.7130380237150746
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8024378358145556
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8117561815472325
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.818920309459774
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8180515365910205
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8198346073356603
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8185162896024369
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7513270537478935
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7427542871546953
      name: Spearman Dot
    - type: pearson_max
      value: 0.8198346073356603
      name: Pearson Max
    - type: spearman_max
      value: 0.8185162896024369
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.6930745722517785
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6982194042238953
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6971382079778946
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6942362764367931
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7012627015062325
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6986972295835788
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6376735798940838
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6344835722310429
      name: Spearman Dot
    - type: pearson_max
      value: 0.7012627015062325
      name: Pearson Max
    - type: spearman_max
      value: 0.6986972295835788
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7855080652087961
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7948979371698327
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8060407473462375
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8041199691999044
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8088262858195556
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8060483394849104
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.677754045289596
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6616232873061395
      name: Spearman Dot
    - type: pearson_max
      value: 0.8088262858195556
      name: Pearson Max
    - type: spearman_max
      value: 0.8060483394849104
      name: Spearman Max
license: apache-2.0
---

# SentenceTransformer based on sentence-transformers/LaBSE

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Omartificial-Intelligence-Space/arabic-n_li-triplet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-labse")
# Run inference
sentences = [
    'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
    'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
    'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7269     |
| **spearman_cosine** | **0.7225** |
| pearson_manhattan   | 0.7259     |
| spearman_manhattan  | 0.721      |
| pearson_euclidean   | 0.726      |
| spearman_euclidean  | 0.7225     |
| pearson_dot         | 0.7269     |
| spearman_dot        | 0.7225     |
| pearson_max         | 0.7269     |
| spearman_max        | 0.7225     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7268     |
| **spearman_cosine** | **0.7224** |
| pearson_manhattan   | 0.7241     |
| spearman_manhattan  | 0.7195     |
| pearson_euclidean   | 0.7248     |
| spearman_euclidean  | 0.7213     |
| pearson_dot         | 0.7253     |
| spearman_dot        | 0.7205     |
| pearson_max         | 0.7268     |
| spearman_max        | 0.7224     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7283     |
| **spearman_cosine** | **0.7264** |
| pearson_manhattan   | 0.7228     |
| spearman_manhattan  | 0.7181     |
| pearson_euclidean   | 0.7251     |
| spearman_euclidean  | 0.7215     |
| pearson_dot         | 0.7243     |
| spearman_dot        | 0.7221     |
| pearson_max         | 0.7283     |
| spearman_max        | 0.7264     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7102     |
| **spearman_cosine** | **0.7104** |
| pearson_manhattan   | 0.7135     |
| spearman_manhattan  | 0.7089     |
| pearson_euclidean   | 0.7172     |
| spearman_euclidean  | 0.713      |
| pearson_dot         | 0.6778     |
| spearman_dot        | 0.6746     |
| pearson_max         | 0.7172     |
| spearman_max        | 0.713      |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6931     |
| **spearman_cosine** | **0.6982** |
| pearson_manhattan   | 0.6971     |
| spearman_manhattan  | 0.6942     |
| pearson_euclidean   | 0.7013     |
| spearman_euclidean  | 0.6987     |
| pearson_dot         | 0.6377     |
| spearman_dot        | 0.6345     |
| pearson_max         | 0.7013     |
| spearman_max        | 0.6987     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8144     |
| **spearman_cosine** | **0.8205** |
| pearson_manhattan   | 0.8203     |
| spearman_manhattan  | 0.8204     |
| pearson_euclidean   | 0.8202     |
| spearman_euclidean  | 0.8205     |
| pearson_dot         | 0.8144     |
| spearman_dot        | 0.8205     |
| pearson_max         | 0.8203     |
| spearman_max        | 0.8205     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8143     |
| **spearman_cosine** | **0.8212** |
| pearson_manhattan   | 0.8217     |
| spearman_manhattan  | 0.8216     |
| pearson_euclidean   | 0.8216     |
| spearman_euclidean  | 0.8219     |
| pearson_dot         | 0.8097     |
| spearman_dot        | 0.8147     |
| pearson_max         | 0.8217     |
| spearman_max        | 0.8219     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8076     |
| **spearman_cosine** | **0.8159** |
| pearson_manhattan   | 0.8209     |
| spearman_manhattan  | 0.8197     |
| pearson_euclidean   | 0.821      |
| spearman_euclidean  | 0.8203     |
| pearson_dot         | 0.7871     |
| spearman_dot        | 0.7875     |
| pearson_max         | 0.821      |
| spearman_max        | 0.8203     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8024     |
| **spearman_cosine** | **0.8118** |
| pearson_manhattan   | 0.8189     |
| spearman_manhattan  | 0.8181     |
| pearson_euclidean   | 0.8198     |
| spearman_euclidean  | 0.8185     |
| pearson_dot         | 0.7513     |
| spearman_dot        | 0.7428     |
| pearson_max         | 0.8198     |
| spearman_max        | 0.8185     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7855     |
| **spearman_cosine** | **0.7949** |
| pearson_manhattan   | 0.806      |
| spearman_manhattan  | 0.8041     |
| pearson_euclidean   | 0.8088     |
| spearman_euclidean  | 0.806      |
| pearson_dot         | 0.6778     |
| spearman_dot        | 0.6616     |
| pearson_max         | 0.8088     |
| spearman_max        | 0.806      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          | negative                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.99 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.44 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.82 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | anchor                                                      | positive                                    | negative                            |
  |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------|
  | <code>شخص على حصان يقفز فوق طائرة معطلة</code>              | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> |
  | <code>أطفال يبتسمون و يلوحون للكاميرا</code>                | <code>هناك أطفال حاضرون</code>              | <code>الاطفال يتجهمون</code>        |
  | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code>        | <code>الصبي يتزلج على الرصيف</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                         | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                           | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 19.71 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.37 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.49 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                               | positive                                               | negative                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
  | <code>امرأتان يتعانقان بينما يحملان حزمة</code>                                                                                                      | <code>إمرأتان يحملان حزمة</code>                       | <code>الرجال يتشاجرون خارج مطعم</code>             |
  | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
  | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code>                                                                             | <code>رجل يبيع الدونات لعميل</code>                    | <code>امرأة تشرب قهوتها في مقهى صغير</code>        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| None   | 0    | -             | 0.7104                       | 0.7264                       | 0.7224                       | 0.6982                      | 0.7225                       |
| 0.0229 | 200  | 13.1738       | -                            | -                            | -                            | -                           | -                            |
| 0.0459 | 400  | 8.8127        | -                            | -                            | -                            | -                           | -                            |
| 0.0688 | 600  | 8.0984        | -                            | -                            | -                            | -                           | -                            |
| 0.0918 | 800  | 7.2984        | -                            | -                            | -                            | -                           | -                            |
| 0.1147 | 1000 | 7.5749        | -                            | -                            | -                            | -                           | -                            |
| 0.1377 | 1200 | 7.1292        | -                            | -                            | -                            | -                           | -                            |
| 0.1606 | 1400 | 6.6146        | -                            | -                            | -                            | -                           | -                            |
| 0.1835 | 1600 | 6.6523        | -                            | -                            | -                            | -                           | -                            |
| 0.2065 | 1800 | 6.1095        | -                            | -                            | -                            | -                           | -                            |
| 0.2294 | 2000 | 6.0841        | -                            | -                            | -                            | -                           | -                            |
| 0.2524 | 2200 | 6.3024        | -                            | -                            | -                            | -                           | -                            |
| 0.2753 | 2400 | 6.1941        | -                            | -                            | -                            | -                           | -                            |
| 0.2983 | 2600 | 6.1686        | -                            | -                            | -                            | -                           | -                            |
| 0.3212 | 2800 | 5.8317        | -                            | -                            | -                            | -                           | -                            |
| 0.3442 | 3000 | 6.0597        | -                            | -                            | -                            | -                           | -                            |
| 0.3671 | 3200 | 5.7832        | -                            | -                            | -                            | -                           | -                            |
| 0.3900 | 3400 | 5.7088        | -                            | -                            | -                            | -                           | -                            |
| 0.4130 | 3600 | 5.6988        | -                            | -                            | -                            | -                           | -                            |
| 0.4359 | 3800 | 5.5268        | -                            | -                            | -                            | -                           | -                            |
| 0.4589 | 4000 | 5.5543        | -                            | -                            | -                            | -                           | -                            |
| 0.4818 | 4200 | 5.3152        | -                            | -                            | -                            | -                           | -                            |
| 0.5048 | 4400 | 5.2894        | -                            | -                            | -                            | -                           | -                            |
| 0.5277 | 4600 | 5.1805        | -                            | -                            | -                            | -                           | -                            |
| 0.5506 | 4800 | 5.4559        | -                            | -                            | -                            | -                           | -                            |
| 0.5736 | 5000 | 5.3836        | -                            | -                            | -                            | -                           | -                            |
| 0.5965 | 5200 | 5.2626        | -                            | -                            | -                            | -                           | -                            |
| 0.6195 | 5400 | 5.2511        | -                            | -                            | -                            | -                           | -                            |
| 0.6424 | 5600 | 5.3308        | -                            | -                            | -                            | -                           | -                            |
| 0.6654 | 5800 | 5.2264        | -                            | -                            | -                            | -                           | -                            |
| 0.6883 | 6000 | 5.2881        | -                            | -                            | -                            | -                           | -                            |
| 0.7113 | 6200 | 5.1349        | -                            | -                            | -                            | -                           | -                            |
| 0.7342 | 6400 | 5.0872        | -                            | -                            | -                            | -                           | -                            |
| 0.7571 | 6600 | 4.5515        | -                            | -                            | -                            | -                           | -                            |
| 0.7801 | 6800 | 3.4312        | -                            | -                            | -                            | -                           | -                            |
| 0.8030 | 7000 | 3.1008        | -                            | -                            | -                            | -                           | -                            |
| 0.8260 | 7200 | 2.9582        | -                            | -                            | -                            | -                           | -                            |
| 0.8489 | 7400 | 2.8153        | -                            | -                            | -                            | -                           | -                            |
| 0.8719 | 7600 | 2.7214        | -                            | -                            | -                            | -                           | -                            |
| 0.8948 | 7800 | 2.5392        | -                            | -                            | -                            | -                           | -                            |
| 0.9177 | 8000 | 2.584         | -                            | -                            | -                            | -                           | -                            |
| 0.9407 | 8200 | 2.5384        | -                            | -                            | -                            | -                           | -                            |
| 0.9636 | 8400 | 2.4937        | -                            | -                            | -                            | -                           | -                            |
| 0.9866 | 8600 | 2.4155        | -                            | -                            | -                            | -                           | -                            |
| 1.0    | 8717 | -             | 0.8118                       | 0.8159                       | 0.8212                       | 0.7949                      | 0.8205                       |


### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## <span style="color:blue">Acknowledgments</span>

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.



```markdown
## Citation

If you use the Arabic Matryoshka Embeddings Model, please cite it as follows:

@misc{nacar2024enhancingsemanticsimilarityunderstanding,
      title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, 
      author={Omer Nacar and Anis Koubaa},
      year={2024},
      eprint={2407.21139},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.21139}, 
}