Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,118 @@ language:
|
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
|
19 |
|
20 |
+
# Fine-tuned Phi-4 Model Documentation
|
21 |
+
|
22 |
+
## 📌 Introduction
|
23 |
+
This documentation provides an in-depth overview of the **fine-tuned Phi-4 conversational AI model**, detailing its **training methodology, parameters, dataset, model deployment, and usage instructions**.
|
24 |
+
|
25 |
+
## 🔹 Model Overview
|
26 |
+
**Phi-4** is a transformer-based language model optimized for **natural language understanding and text generation**. We have fine-tuned it using **LoRA (Low-Rank Adaptation)** with the **Unsloth framework**, making it lightweight and efficient while preserving the base model's capabilities.
|
27 |
+
|
28 |
+
## 🔹 Training Details
|
29 |
+
### **🛠 Fine-tuning Methodology**
|
30 |
+
We employed **LoRA (Low-Rank Adaptation)** for fine-tuning, which significantly reduces the number of trainable parameters while retaining the model’s expressive power.
|
31 |
+
|
32 |
+
### **📑 Dataset Used**
|
33 |
+
- **Dataset Name**: `mlabonne/FineTome-100k`
|
34 |
+
- **Dataset Size**: 100,000 examples
|
35 |
+
- **Data Format**: Conversational AI dataset with structured prompts and responses.
|
36 |
+
- **Preprocessing**: The dataset was standardized using `unsloth.chat_templates.standardize_sharegpt()`
|
37 |
+
|
38 |
+
### **🔢 Training Parameters**
|
39 |
+
| Parameter | Value |
|
40 |
+
|----------------------|-------|
|
41 |
+
| LoRA Rank (`r`) | 16 |
|
42 |
+
| LoRA Alpha | 16 |
|
43 |
+
| LoRA Dropout | 0 |
|
44 |
+
| Target Modules | `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj` |
|
45 |
+
| Max Sequence Length | 2048 |
|
46 |
+
| Load in 4-bit | True |
|
47 |
+
| Gradient Checkpointing | `unsloth` |
|
48 |
+
| Fine-tuning Duration | **10 epochs** |
|
49 |
+
| Optimizer Used | AdamW |
|
50 |
+
| Learning Rate | 2e-5 |
|
51 |
+
|
52 |
+
## 🔹 How to Load the Model
|
53 |
+
To load the fine-tuned model, use the **Unsloth framework**:
|
54 |
+
|
55 |
+
```python
|
56 |
+
from unsloth import FastLanguageModel
|
57 |
+
from unsloth.chat_templates import get_chat_template
|
58 |
+
from peft import PeftModel
|
59 |
+
|
60 |
+
model_name = "unsloth/Phi-4"
|
61 |
+
max_seq_length = 2048
|
62 |
+
load_in_4bit = True
|
63 |
+
|
64 |
+
# Load model and tokenizer
|
65 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
66 |
+
model_name=model_name,
|
67 |
+
max_seq_length=max_seq_length,
|
68 |
+
load_in_4bit=load_in_4bit
|
69 |
+
)
|
70 |
+
|
71 |
+
# Apply LoRA adapter
|
72 |
+
model = FastLanguageModel.get_peft_model(
|
73 |
+
model,
|
74 |
+
r=16,
|
75 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
76 |
+
"gate_proj", "up_proj", "down_proj"],
|
77 |
+
lora_alpha=16,
|
78 |
+
lora_dropout=0,
|
79 |
+
bias="none",
|
80 |
+
use_gradient_checkpointing="unsloth"
|
81 |
+
)
|
82 |
+
```
|
83 |
+
|
84 |
+
## 🔹 Deploying the Model
|
85 |
+
### **🚀 Using Google Colab**
|
86 |
+
1. Install dependencies:
|
87 |
+
```bash
|
88 |
+
pip install gradio transformers torch unsloth peft
|
89 |
+
```
|
90 |
+
2. Load the model using the script above.
|
91 |
+
3. Run inference using the chatbot interface.
|
92 |
+
|
93 |
+
### **🚀 Deploy on Hugging Face Spaces**
|
94 |
+
1. Save the script as `app.py`.
|
95 |
+
2. Create a `requirements.txt` file with:
|
96 |
+
```
|
97 |
+
gradio
|
98 |
+
transformers
|
99 |
+
torch
|
100 |
+
unsloth
|
101 |
+
peft
|
102 |
+
```
|
103 |
+
3. Upload the files to a new **Hugging Face Space**.
|
104 |
+
4. Select **Python environment** and click **Deploy**.
|
105 |
+
|
106 |
+
## 🔹 Using the Model
|
107 |
+
### **🗨 Chatbot Interface (Gradio UI)**
|
108 |
+
To interact with the fine-tuned model using **Gradio**, use:
|
109 |
+
|
110 |
+
```python
|
111 |
+
import gradio as gr
|
112 |
+
|
113 |
+
def chat_with_model(user_input):
|
114 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
115 |
+
output = model.generate(**inputs, max_length=200)
|
116 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
117 |
+
return response
|
118 |
+
|
119 |
+
demo = gr.Interface(
|
120 |
+
fn=chat_with_model,
|
121 |
+
inputs=gr.Textbox(label="Your Message"),
|
122 |
+
outputs=gr.Textbox(label="Chatbot's Response"),
|
123 |
+
title="LoRA-Enhanced Phi-4 Chatbot"
|
124 |
+
)
|
125 |
+
|
126 |
+
demo.launch()
|
127 |
+
```
|
128 |
+
|
129 |
+
## 📌 Conclusion
|
130 |
+
This **fine-tuned Phi-4 model** delivers **optimized conversational AI capabilities** using **LoRA fine-tuning and Unsloth’s 4-bit quantization**. The model is **lightweight, memory-efficient**, and suitable for chatbot applications in both **research and production environments**.
|
131 |
+
|
132 |
+
|
133 |
|
134 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|