alaleye commited on
Commit
f5c8a98
·
verified ·
1 Parent(s): 98f3648

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -1
README.md CHANGED
@@ -4,4 +4,61 @@ datasets:
4
  metrics:
5
  - wer
6
  pipeline_tag: automatic-speech-recognition
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  metrics:
5
  - wer
6
  pipeline_tag: automatic-speech-recognition
7
+ ---
8
+
9
+ # Wav2vec2-Bert-Fongbe
10
+
11
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://arxiv.org/abs/2108.06209). This has a WER of 24.20 on [Aloresb dataset](https://huggingface.co/datasets/alaleye/aloresb), fongbe language.
12
+
13
+ ## Model description
14
+ This model is a fine-tuned version of the wav2vec2-BERT architecture on the AlorésB dataset for the Fongbe language. Fongbe, a Gbe language, is predominantly spoken in the southern region of Benin. The model has been fine-tuned specifically for Automatic Speech Recognition (ASR) tasks in this language.
15
+ It can be useful for transcription services, research, and linguistic studies involving Fongbe.
16
+
17
+ ### Details
18
+
19
+ * Model Name: wav2vec2-bert-fongbe
20
+ * Base Model: facebook/w2v-bert-2.0
21
+ * Fine-tuned on: Aloresb dataset
22
+ * Languages: Fongbe
23
+ * Architecture: Wav2vec2 + BERT
24
+ * Fine-tuning Dataset: Aloresb (Fongbe)
25
+
26
+ ### How to use
27
+
28
+ ```
29
+ import torch
30
+ import soundfile as sf
31
+ from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
32
+
33
+ model_name = "OctaSpace/wav2vec2-bert-fongbe"
34
+
35
+ asr_model = AutoModelForCTC.from_pretrained(model_name).to(device)
36
+ processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
37
+
38
+ audio_input, _ = sf.read(file)
39
+
40
+ inputs = processor([audio_input], sampling_rate=16_000).input_features
41
+ features = torch.tensor(inputs)
42
+
43
+ with torch.no_grad():
44
+ logits = asr_model(features).logits
45
+
46
+ predicted_ids = torch.argmax(logits, dim=-1)
47
+ predictions = processor.batch_decode(predicted_ids, skip_special_tokens=True)
48
+
49
+ ```
50
+
51
+ ### Training Procedure
52
+
53
+ The model was fine-tuned on the Aloresb dataset, which contains audio recordings and transcriptions in Fongbe.
54
+
55
+ ### Training Parameters:
56
+
57
+ Optimizer: AdamW
58
+ Learning Rate: 3e-5
59
+ Batch Size: 3
60
+ Epochs: 3
61
+ Evaluation Results
62
+ The model was evaluated using the Word Error Rate (WER) metric on a test set. Here are the results:
63
+
64
+ WER: 24.20%