tdelic commited on
Commit
d6258ee
·
verified ·
1 Parent(s): 57bb9a8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -203
README.md CHANGED
@@ -1,204 +1,123 @@
1
- ---
2
- library_name: peft
3
- base_model: mistral7b
4
- ---
5
 
6
- # Model Card for Model ID
7
-
8
- Mistral7B fintunded on Multi-XScience dataset, which a more specialized vocabulary in science and more capacity in the scientific conversation summary task.
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
202
- ### Framework versions
203
-
204
- - PEFT 0.7.1
 
 
 
 
 
1
 
2
+ # Fine-tuned Mistral Model for Multi-Document Summarization
3
+ This model a fine-tuned model based on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on
4
+ [multi_x_science_sum](https://huggingface.co/datasets/multi_x_science_sum) dataset.
5
+
6
+ ## Model description
7
+
8
+ Mistral-7B-multixscience-finetuned is finetuned on multi_x_science_sum
9
+ dataset in order to extend the capabilities of the original
10
+ Mistral model in multi-document summarization tasks.
11
+ The fine-tuned model leverages the power of Mistral model fundation,
12
+ adapting it to synthesize and summarize information from
13
+ multiple documents efficiently.
14
+
15
+ ## Training and evaluation dataset
16
+
17
+ Multi_x_science_sum is a large-scale multi-document
18
+ summarization dataset created from scientific articles.
19
+ Multi-XScience introduces a challenging multi-document
20
+ summarization task: writing the related-work section of a
21
+ paper based on its abstract and the articles it references.
22
+
23
+ * [paper](https://arxiv.org/pdf/2010.14235.pdf)
24
+ * [Source](https://huggingface.co/datasets/multi_x_science_sum)
25
+
26
+ The training and evaluation datasets were uniquely generated
27
+ to facilitate the fine-tuning of the model for
28
+ multi-document summarization, particularly focusing on
29
+ generating related work sections for scientific papers.
30
+ Using a custom-designed prompt-generation process, the dataset
31
+ is created to simulate the task of synthesizing related work
32
+ sections based on a given paper's abstract and the abstracts
33
+ of its referenced papers.
34
+
35
+ ### Dataset Generation process
36
+
37
+ The process involves generating prompts that instruct the
38
+ model to use the abstract of the current paper along with
39
+ the abstracts of cited papers to generate a new related work
40
+ section. This approach aims to mimic the real-world scenario
41
+ where a researcher synthesizes information from multiple
42
+ sources to draft the related work section of a paper.
43
+
44
+ * **Prompt Structure:** Each data point consists of an instructional prompt that includes:
45
+
46
+ * The abstract of the current paper.
47
+ * Abstracts from cited papers, labeled with unique identifiers.
48
+ * An expected model response in the form of a generated related work section.
49
+
50
+ ### Prompt generation Code
51
+
52
+ ```
53
+ def generate_related_work_prompt(data):
54
+ prompt = "[INST] <<SYS>>\n"
55
+ prompt += "Use the abstract of the current paper and the abstracts of the cited papers to generate new related work.\n"
56
+ prompt += "<</SYS>>\n\n"
57
+ prompt += "Input:\nCurrent Paper's Abstract:\n- {}\n\n".format(data['abstract'])
58
+ prompt += "Cited Papers' Abstracts:\n"
59
+ for cite_id, cite_abstract in zip(data['ref_abstract']['cite_N'], data['ref_abstract']['abstract']):
60
+ prompt += "- {}: {}\n".format(cite_id, cite_abstract)
61
+ prompt += "\n[/INST]\n\nGenerated Related Work:\n{}\n".format(data['related_work'])
62
+ return {"text": prompt}
63
+ ```
64
+ The dataset generated through this process was used to train
65
+ and evaluate the finetuned model, ensuring that it learns to
66
+ accurately synthesize information from multiple sources into
67
+ cohesive summaries.
68
+
69
+ ## Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ ```
73
+ learning_rate: 2e-5
74
+ train_batch_size: 4
75
+ eval_batch_size: 4
76
+ seed: 42
77
+ optimizer: adamw_8bit
78
+ num_epochs: 5
79
+ ```
80
+ ## Usage
81
+
82
+ ```
83
+ import torch
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+ from peft import PeftConfig, PeftModel
86
+
87
+ base_model = "mistralai/Mistral-7B-v0.1"
88
+ adapter = "OctaSpace/Mistral7B-fintuned"
89
+
90
+ # Load tokenizer
91
+ tokenizer = AutoTokenizer.from_pretrained(
92
+ base_model,
93
+ add_bos_token=True,
94
+ trust_remote_code=True,
95
+ padding_side='left'
96
+ )
97
+
98
+ # Create peft model using base_model and finetuned adapter
99
+ config = PeftConfig.from_pretrained(adapter)
100
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
101
+ load_in_4bit=True,
102
+ device_map='auto',
103
+ torch_dtype='auto')
104
+ model = PeftModel.from_pretrained(model, adapter)
105
+
106
+ device = "cuda" if torch.cuda.is_available() else "cpu"
107
+ model.to(device)
108
+ model.eval()
109
+
110
+ # Prompt content:
111
+ messages = [] # Put here your related work generation instruction
112
+
113
+ input_ids = tokenizer.apply_chat_template(conversation=messages,
114
+ tokenize=True,
115
+ add_generation_prompt=True,
116
+ return_tensors='pt').to(device)
117
+ summary_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, pad_token_id=2)
118
+ summaries = tokenizer.batch_decode(summary_ids.detach().cpu().numpy(), skip_special_tokens = True)
119
+
120
+ # Model response:
121
+ print(summaries[0])
122
+
123
+ ```