tdelic commited on
Commit
65b1de2
·
verified ·
1 Parent(s): 31e2243

Upload mistral-finetuned.md

Browse files
Files changed (1) hide show
  1. mistral-finetuned.md +123 -0
mistral-finetuned.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Fine-tuned Mistral Model for Multi-Document Summarization
3
+ This model a fine-tuned model based on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on
4
+ [multi_x_science_sum](https://huggingface.co/datasets/multi_x_science_sum) dataset.
5
+
6
+ ## Model description
7
+
8
+ Mistral-7B-multixscience-finetuned is finetuned on multi_x_science_sum
9
+ dataset in order to extend the capabilities of the original
10
+ Mistral model in multi-document summarization tasks.
11
+ The fine-tuned model leverages the power of Mistral model fundation,
12
+ adapting it to synthesize and summarize information from
13
+ multiple documents efficiently.
14
+
15
+ ## Training and evaluation dataset
16
+
17
+ Multi_x_science_sum is a large-scale multi-document
18
+ summarization dataset created from scientific articles.
19
+ Multi-XScience introduces a challenging multi-document
20
+ summarization task: writing the related-work section of a
21
+ paper based on its abstract and the articles it references.
22
+
23
+ * [paper](https://arxiv.org/pdf/2010.14235.pdf)
24
+ * [Source](https://huggingface.co/datasets/multi_x_science_sum)
25
+
26
+ The training and evaluation datasets were uniquely generated
27
+ to facilitate the fine-tuning of the model for
28
+ multi-document summarization, particularly focusing on
29
+ generating related work sections for scientific papers.
30
+ Using a custom-designed prompt-generation process, the dataset
31
+ is created to simulate the task of synthesizing related work
32
+ sections based on a given paper's abstract and the abstracts
33
+ of its referenced papers.
34
+
35
+ ### Dataset Generation process
36
+
37
+ The process involves generating prompts that instruct the
38
+ model to use the abstract of the current paper along with
39
+ the abstracts of cited papers to generate a new related work
40
+ section. This approach aims to mimic the real-world scenario
41
+ where a researcher synthesizes information from multiple
42
+ sources to draft the related work section of a paper.
43
+
44
+ * **Prompt Structure:** Each data point consists of an instructional prompt that includes:
45
+
46
+ * The abstract of the current paper.
47
+ * Abstracts from cited papers, labeled with unique identifiers.
48
+ * An expected model response in the form of a generated related work section.
49
+
50
+ ### Prompt generation Code
51
+
52
+ ```
53
+ def generate_related_work_prompt(data):
54
+ prompt = "[INST] <<SYS>>\n"
55
+ prompt += "Use the abstract of the current paper and the abstracts of the cited papers to generate new related work.\n"
56
+ prompt += "<</SYS>>\n\n"
57
+ prompt += "Input:\nCurrent Paper's Abstract:\n- {}\n\n".format(data['abstract'])
58
+ prompt += "Cited Papers' Abstracts:\n"
59
+ for cite_id, cite_abstract in zip(data['ref_abstract']['cite_N'], data['ref_abstract']['abstract']):
60
+ prompt += "- {}: {}\n".format(cite_id, cite_abstract)
61
+ prompt += "\n[/INST]\n\nGenerated Related Work:\n{}\n".format(data['related_work'])
62
+ return {"text": prompt}
63
+ ```
64
+ The dataset generated through this process was used to train
65
+ and evaluate the finetuned model, ensuring that it learns to
66
+ accurately synthesize information from multiple sources into
67
+ cohesive summaries.
68
+
69
+ ## Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ ```
73
+ learning_rate: 2e-5
74
+ train_batch_size: 4
75
+ eval_batch_size: 4
76
+ seed: 42
77
+ optimizer: adamw_8bit
78
+ num_epochs: 5
79
+ ```
80
+ ## Usage
81
+
82
+ ```
83
+ import torch
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+ from peft import PeftConfig, PeftModel
86
+
87
+ base_model = "mistralai/Mistral-7B-v0.1"
88
+ adapter = "OctaSpace/Mistral7B-fintuned"
89
+
90
+ # Load tokenizer
91
+ tokenizer = AutoTokenizer.from_pretrained(
92
+ base_model,
93
+ add_bos_token=True,
94
+ trust_remote_code=True,
95
+ padding_side='left'
96
+ )
97
+
98
+ # Create peft model using base_model and finetuned adapter
99
+ config = PeftConfig.from_pretrained(adapter)
100
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
101
+ load_in_4bit=True,
102
+ device_map='auto',
103
+ torch_dtype='auto')
104
+ model = PeftModel.from_pretrained(model, adapter)
105
+
106
+ device = "cuda" if torch.cuda.is_available() else "cpu"
107
+ model.to(device)
108
+ model.eval()
109
+
110
+ # Prompt content:
111
+ messages = [] # Put here your related work generation instruction
112
+
113
+ input_ids = tokenizer.apply_chat_template(conversation=messages,
114
+ tokenize=True,
115
+ add_generation_prompt=True,
116
+ return_tensors='pt').to(device)
117
+ summary_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, pad_token_id=2)
118
+ summaries = tokenizer.batch_decode(summary_ids.detach().cpu().numpy(), skip_special_tokens = True)
119
+
120
+ # Model response:
121
+ print(summaries[0])
122
+
123
+ ```