--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/Nymbo/Model_Repo_Template git push --force ``` --- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {{ card_data }} --- # Model Card for {{ model_id | default("Model ID", true) }} {{ model_summary | default("", true) }} ## Model Details ### Model Description {{ model_description | default("", true) }} - **Developed by:** {{ developers | default("[More Information Needed]", true)}} - **Funded by [optional]:** {{ funded_by | default("[More Information Needed]", true)}} - **Shared by [optional]:** {{ shared_by | default("[More Information Needed]", true)}} - **Model type:** {{ model_type | default("[More Information Needed]", true)}} - **Language(s) (NLP):** {{ language | default("[More Information Needed]", true)}} - **License:** {{ license | default("[More Information Needed]", true)}} - **Finetuned from model [optional]:** {{ base_model | default("[More Information Needed]", true)}} ### Model Sources [optional] - **Repository:** {{ repo | default("[More Information Needed]", true)}} - **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}} - **Demo [optional]:** {{ demo | default("[More Information Needed]", true)}} ## Uses ### Direct Use {{ direct_use | default("[More Information Needed]", true)}} ### Downstream Use [optional] {{ downstream_use | default("[More Information Needed]", true)}} ### Out-of-Scope Use {{ out_of_scope_use | default("[More Information Needed]", true)}} ## Bias, Risks, and Limitations {{ bias_risks_limitations | default("[More Information Needed]", true)}} ### Recommendations {{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}} ## How to Get Started with the Model Use the code below to get started with the model. {{ get_started_code | default("[More Information Needed]", true)}} ## Training Details ### Training Data {{ training_data | default("[More Information Needed]", true)}} ### Training Procedure #### Preprocessing [optional] {{ preprocessing | default("[More Information Needed]", true)}} #### Training Hyperparameters - **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} #### Speeds, Sizes, Times [optional] {{ speeds_sizes_times | default("[More Information Needed]", true)}} ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data {{ testing_data | default("[More Information Needed]", true)}} #### Factors {{ testing_factors | default("[More Information Needed]", true)}} #### Metrics {{ testing_metrics | default("[More Information Needed]", true)}} ### Results {{ results | default("[More Information Needed]", true)}} #### Summary {{ results_summary | default("", true) }} ## Model Examination [optional] {{ model_examination | default("[More Information Needed]", true)}} ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** {{ hardware_type | default("[More Information Needed]", true)}} - **Hours used:** {{ hours_used | default("[More Information Needed]", true)}} - **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}} - **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}} - **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}} ## Technical Specifications [optional] ### Model Architecture and Objective {{ model_specs | default("[More Information Needed]", true)}} ### Compute Infrastructure {{ compute_infrastructure | default("[More Information Needed]", true)}} #### Hardware {{ hardware_requirements | default("[More Information Needed]", true)}} #### Software {{ software | default("[More Information Needed]", true)}} ## Citation [optional] **BibTeX:** {{ citation_bibtex | default("[More Information Needed]", true)}} **APA:** {{ citation_apa | default("[More Information Needed]", true)}} ## Glossary [optional] {{ glossary | default("[More Information Needed]", true)}} ## More Information [optional] {{ more_information | default("[More Information Needed]", true)}} ## Model Card Authors [optional] {{ model_card_authors | default("[More Information Needed]", true)}} ## Model Card Contact {{ model_card_contact | default("[More Information Needed]", true)}}