nuralnetwork
commited on
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +607 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy
|
8 |
+
- dot_accuracy
|
9 |
+
- manhattan_accuracy
|
10 |
+
- euclidean_accuracy
|
11 |
+
- max_accuracy
|
12 |
+
pipeline_tag: sentence-similarity
|
13 |
+
tags:
|
14 |
+
- sentence-transformers
|
15 |
+
- sentence-similarity
|
16 |
+
- feature-extraction
|
17 |
+
- generated_from_trainer
|
18 |
+
- dataset_size:317521
|
19 |
+
- loss:TripletLoss
|
20 |
+
widget:
|
21 |
+
- source_sentence: Write a function to extract every specified element from a given
|
22 |
+
two dimensional list.
|
23 |
+
sentences:
|
24 |
+
- "def nCr_mod_p(n, r, p): \r\n\tif (r > n- r): \r\n\t\tr = n - r \r\n\tC = [0 for\
|
25 |
+
\ i in range(r + 1)] \r\n\tC[0] = 1 \r\n\tfor i in range(1, n + 1): \r\n\t\tfor\
|
26 |
+
\ j in range(min(i, r), 0, -1): \r\n\t\t\tC[j] = (C[j] + C[j-1]) % p \r\n\treturn\
|
27 |
+
\ C[r] "
|
28 |
+
- "import cmath\r\ndef len_complex(a,b):\r\n cn=complex(a,b)\r\n length=abs(cn)\r\
|
29 |
+
\n return length"
|
30 |
+
- "def specified_element(nums, N):\r\n result = [i[N] for i in nums]\r\n return\
|
31 |
+
\ result"
|
32 |
+
- source_sentence: Write a python function to find the kth element in an array containing
|
33 |
+
odd elements first and then even elements.
|
34 |
+
sentences:
|
35 |
+
- "def get_Number(n, k): \r\n arr = [0] * n; \r\n i = 0; \r\n odd = 1;\
|
36 |
+
\ \r\n while (odd <= n): \r\n arr[i] = odd; \r\n i += 1; \r\
|
37 |
+
\n odd += 2;\r\n even = 2; \r\n while (even <= n): \r\n arr[i]\
|
38 |
+
\ = even; \r\n i += 1;\r\n even += 2; \r\n return arr[k - 1]; "
|
39 |
+
- "def sort_matrix(M):\r\n result = sorted(M, key=sum)\r\n return result"
|
40 |
+
- "INT_BITS = 32\r\ndef left_Rotate(n,d): \r\n return (n << d)|(n >> (INT_BITS\
|
41 |
+
\ - d)) "
|
42 |
+
- source_sentence: Write a function to remove all the words with k length in the given
|
43 |
+
string.
|
44 |
+
sentences:
|
45 |
+
- "def remove_tuples(test_list, K):\r\n res = [ele for ele in test_list if len(ele)\
|
46 |
+
\ != K]\r\n return (res) "
|
47 |
+
- "def is_Sub_Array(A,B,n,m): \r\n i = 0; j = 0; \r\n while (i < n and j <\
|
48 |
+
\ m): \r\n if (A[i] == B[j]): \r\n i += 1; \r\n \
|
49 |
+
\ j += 1; \r\n if (j == m): \r\n return True; \r\n\
|
50 |
+
\ else: \r\n i = i - j + 1; \r\n j = 0; \r\n\
|
51 |
+
\ return False; "
|
52 |
+
- "def remove_length(test_str, K):\r\n temp = test_str.split()\r\n res = [ele\
|
53 |
+
\ for ele in temp if len(ele) != K]\r\n res = ' '.join(res)\r\n return (res) "
|
54 |
+
- source_sentence: Write a function to find the occurence of characters 'std' in the
|
55 |
+
given string 1. list item 1. list item 1. list item 2. list item 2. list item
|
56 |
+
2. list item
|
57 |
+
sentences:
|
58 |
+
- "def magic_square_test(my_matrix):\r\n iSize = len(my_matrix[0])\r\n sum_list\
|
59 |
+
\ = []\r\n sum_list.extend([sum (lines) for lines in my_matrix]) \r\n \
|
60 |
+
\ for col in range(iSize):\r\n sum_list.append(sum(row[col] for row in\
|
61 |
+
\ my_matrix))\r\n result1 = 0\r\n for i in range(0,iSize):\r\n result1\
|
62 |
+
\ +=my_matrix[i][i]\r\n sum_list.append(result1) \r\n result2 = 0\r\
|
63 |
+
\n for i in range(iSize-1,-1,-1):\r\n result2 +=my_matrix[i][i]\r\n\
|
64 |
+
\ sum_list.append(result2)\r\n if len(set(sum_list))>1:\r\n return\
|
65 |
+
\ False\r\n return True"
|
66 |
+
- "def count_occurance(s):\r\n count=0\r\n for i in range(len(s)):\r\n if (s[i]==\
|
67 |
+
\ 's' and s[i+1]=='t' and s[i+2]== 'd'):\r\n count = count + 1\r\n return\
|
68 |
+
\ count"
|
69 |
+
- "def power(a,b):\r\n\tif b==0:\r\n\t\treturn 1\r\n\telif a==0:\r\n\t\treturn 0\r\
|
70 |
+
\n\telif b==1:\r\n\t\treturn a\r\n\telse:\r\n\t\treturn a*power(a,b-1)"
|
71 |
+
- source_sentence: Write a function to find sum and average of first n natural numbers.
|
72 |
+
sentences:
|
73 |
+
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
|
74 |
+
\ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
|
75 |
+
\n return word_len\t"
|
76 |
+
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
|
77 |
+
\ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
|
78 |
+
\n return word_len\t"
|
79 |
+
- "def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\
|
80 |
+
\n total = total + value\r\n average = total / number\r\n return (total,average)"
|
81 |
+
model-index:
|
82 |
+
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
|
83 |
+
results:
|
84 |
+
- task:
|
85 |
+
type: triplet
|
86 |
+
name: Triplet
|
87 |
+
dataset:
|
88 |
+
name: sts dev
|
89 |
+
type: sts-dev
|
90 |
+
metrics:
|
91 |
+
- type: cosine_accuracy
|
92 |
+
value: 0.997141408425864
|
93 |
+
name: Cosine Accuracy
|
94 |
+
- type: dot_accuracy
|
95 |
+
value: 0.0028145001873883936
|
96 |
+
name: Dot Accuracy
|
97 |
+
- type: manhattan_accuracy
|
98 |
+
value: 0.99605382088609
|
99 |
+
name: Manhattan Accuracy
|
100 |
+
- type: euclidean_accuracy
|
101 |
+
value: 0.997141408425864
|
102 |
+
name: Euclidean Accuracy
|
103 |
+
- type: max_accuracy
|
104 |
+
value: 0.997141408425864
|
105 |
+
name: Max Accuracy
|
106 |
+
---
|
107 |
+
|
108 |
+
# SentenceTransformer based on BAAI/bge-base-en-v1.5
|
109 |
+
|
110 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
111 |
+
|
112 |
+
## Model Details
|
113 |
+
|
114 |
+
### Model Description
|
115 |
+
- **Model Type:** Sentence Transformer
|
116 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
117 |
+
- **Maximum Sequence Length:** 512 tokens
|
118 |
+
- **Output Dimensionality:** 768 tokens
|
119 |
+
- **Similarity Function:** Cosine Similarity
|
120 |
+
<!-- - **Training Dataset:** Unknown -->
|
121 |
+
<!-- - **Language:** Unknown -->
|
122 |
+
<!-- - **License:** Unknown -->
|
123 |
+
|
124 |
+
### Model Sources
|
125 |
+
|
126 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
127 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
128 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
129 |
+
|
130 |
+
### Full Model Architecture
|
131 |
+
|
132 |
+
```
|
133 |
+
SentenceTransformer(
|
134 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
135 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
136 |
+
(2): Normalize()
|
137 |
+
)
|
138 |
+
```
|
139 |
+
|
140 |
+
## Usage
|
141 |
+
|
142 |
+
### Direct Usage (Sentence Transformers)
|
143 |
+
|
144 |
+
First install the Sentence Transformers library:
|
145 |
+
|
146 |
+
```bash
|
147 |
+
pip install -U sentence-transformers
|
148 |
+
```
|
149 |
+
|
150 |
+
Then you can load this model and run inference.
|
151 |
+
```python
|
152 |
+
from sentence_transformers import SentenceTransformer
|
153 |
+
|
154 |
+
# Download from the 🤗 Hub
|
155 |
+
model = SentenceTransformer("Nutanix/bge-base-mbpp")
|
156 |
+
# Run inference
|
157 |
+
sentences = [
|
158 |
+
'Write a function to find sum and average of first n natural numbers.',
|
159 |
+
'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
|
160 |
+
'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
|
161 |
+
]
|
162 |
+
embeddings = model.encode(sentences)
|
163 |
+
print(embeddings.shape)
|
164 |
+
# [3, 768]
|
165 |
+
|
166 |
+
# Get the similarity scores for the embeddings
|
167 |
+
similarities = model.similarity(embeddings, embeddings)
|
168 |
+
print(similarities.shape)
|
169 |
+
# [3, 3]
|
170 |
+
```
|
171 |
+
|
172 |
+
<!--
|
173 |
+
### Direct Usage (Transformers)
|
174 |
+
|
175 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
176 |
+
|
177 |
+
</details>
|
178 |
+
-->
|
179 |
+
|
180 |
+
<!--
|
181 |
+
### Downstream Usage (Sentence Transformers)
|
182 |
+
|
183 |
+
You can finetune this model on your own dataset.
|
184 |
+
|
185 |
+
<details><summary>Click to expand</summary>
|
186 |
+
|
187 |
+
</details>
|
188 |
+
-->
|
189 |
+
|
190 |
+
<!--
|
191 |
+
### Out-of-Scope Use
|
192 |
+
|
193 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
194 |
+
-->
|
195 |
+
|
196 |
+
## Evaluation
|
197 |
+
|
198 |
+
### Metrics
|
199 |
+
|
200 |
+
#### Triplet
|
201 |
+
* Dataset: `sts-dev`
|
202 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
203 |
+
|
204 |
+
| Metric | Value |
|
205 |
+
|:-------------------|:-----------|
|
206 |
+
| cosine_accuracy | 0.9971 |
|
207 |
+
| dot_accuracy | 0.0028 |
|
208 |
+
| manhattan_accuracy | 0.9961 |
|
209 |
+
| euclidean_accuracy | 0.9971 |
|
210 |
+
| **max_accuracy** | **0.9971** |
|
211 |
+
|
212 |
+
<!--
|
213 |
+
## Bias, Risks and Limitations
|
214 |
+
|
215 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
216 |
+
-->
|
217 |
+
|
218 |
+
<!--
|
219 |
+
### Recommendations
|
220 |
+
|
221 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
222 |
+
-->
|
223 |
+
|
224 |
+
## Training Details
|
225 |
+
|
226 |
+
### Training Hyperparameters
|
227 |
+
#### Non-Default Hyperparameters
|
228 |
+
|
229 |
+
- `per_device_train_batch_size`: 16
|
230 |
+
- `per_device_eval_batch_size`: 16
|
231 |
+
- `num_train_epochs`: 1
|
232 |
+
- `bf16`: True
|
233 |
+
- `batch_sampler`: no_duplicates
|
234 |
+
|
235 |
+
#### All Hyperparameters
|
236 |
+
<details><summary>Click to expand</summary>
|
237 |
+
|
238 |
+
- `overwrite_output_dir`: False
|
239 |
+
- `do_predict`: False
|
240 |
+
- `prediction_loss_only`: True
|
241 |
+
- `per_device_train_batch_size`: 16
|
242 |
+
- `per_device_eval_batch_size`: 16
|
243 |
+
- `per_gpu_train_batch_size`: None
|
244 |
+
- `per_gpu_eval_batch_size`: None
|
245 |
+
- `gradient_accumulation_steps`: 1
|
246 |
+
- `eval_accumulation_steps`: None
|
247 |
+
- `learning_rate`: 5e-05
|
248 |
+
- `weight_decay`: 0.0
|
249 |
+
- `adam_beta1`: 0.9
|
250 |
+
- `adam_beta2`: 0.999
|
251 |
+
- `adam_epsilon`: 1e-08
|
252 |
+
- `max_grad_norm`: 1.0
|
253 |
+
- `num_train_epochs`: 1
|
254 |
+
- `max_steps`: -1
|
255 |
+
- `lr_scheduler_type`: linear
|
256 |
+
- `lr_scheduler_kwargs`: {}
|
257 |
+
- `warmup_ratio`: 0
|
258 |
+
- `warmup_steps`: 0
|
259 |
+
- `log_level`: passive
|
260 |
+
- `log_level_replica`: warning
|
261 |
+
- `log_on_each_node`: True
|
262 |
+
- `logging_nan_inf_filter`: True
|
263 |
+
- `save_safetensors`: True
|
264 |
+
- `save_on_each_node`: False
|
265 |
+
- `save_only_model`: False
|
266 |
+
- `no_cuda`: False
|
267 |
+
- `use_cpu`: False
|
268 |
+
- `use_mps_device`: False
|
269 |
+
- `seed`: 42
|
270 |
+
- `data_seed`: None
|
271 |
+
- `jit_mode_eval`: False
|
272 |
+
- `use_ipex`: False
|
273 |
+
- `bf16`: True
|
274 |
+
- `fp16`: False
|
275 |
+
- `fp16_opt_level`: O1
|
276 |
+
- `half_precision_backend`: auto
|
277 |
+
- `bf16_full_eval`: False
|
278 |
+
- `fp16_full_eval`: False
|
279 |
+
- `tf32`: None
|
280 |
+
- `local_rank`: 0
|
281 |
+
- `ddp_backend`: None
|
282 |
+
- `tpu_num_cores`: None
|
283 |
+
- `tpu_metrics_debug`: False
|
284 |
+
- `debug`: []
|
285 |
+
- `dataloader_drop_last`: False
|
286 |
+
- `dataloader_num_workers`: 0
|
287 |
+
- `dataloader_prefetch_factor`: None
|
288 |
+
- `past_index`: -1
|
289 |
+
- `disable_tqdm`: False
|
290 |
+
- `remove_unused_columns`: True
|
291 |
+
- `label_names`: None
|
292 |
+
- `load_best_model_at_end`: False
|
293 |
+
- `ignore_data_skip`: False
|
294 |
+
- `fsdp`: []
|
295 |
+
- `fsdp_min_num_params`: 0
|
296 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
297 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
298 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
299 |
+
- `deepspeed`: None
|
300 |
+
- `label_smoothing_factor`: 0.0
|
301 |
+
- `optim`: adamw_torch
|
302 |
+
- `optim_args`: None
|
303 |
+
- `adafactor`: False
|
304 |
+
- `group_by_length`: False
|
305 |
+
- `length_column_name`: length
|
306 |
+
- `ddp_find_unused_parameters`: None
|
307 |
+
- `ddp_bucket_cap_mb`: None
|
308 |
+
- `ddp_broadcast_buffers`: False
|
309 |
+
- `dataloader_pin_memory`: True
|
310 |
+
- `dataloader_persistent_workers`: False
|
311 |
+
- `skip_memory_metrics`: True
|
312 |
+
- `use_legacy_prediction_loop`: False
|
313 |
+
- `push_to_hub`: False
|
314 |
+
- `resume_from_checkpoint`: None
|
315 |
+
- `hub_model_id`: None
|
316 |
+
- `hub_strategy`: every_save
|
317 |
+
- `hub_private_repo`: False
|
318 |
+
- `hub_always_push`: False
|
319 |
+
- `gradient_checkpointing`: False
|
320 |
+
- `gradient_checkpointing_kwargs`: None
|
321 |
+
- `include_inputs_for_metrics`: False
|
322 |
+
- `eval_do_concat_batches`: True
|
323 |
+
- `fp16_backend`: auto
|
324 |
+
- `push_to_hub_model_id`: None
|
325 |
+
- `push_to_hub_organization`: None
|
326 |
+
- `mp_parameters`:
|
327 |
+
- `auto_find_batch_size`: False
|
328 |
+
- `full_determinism`: False
|
329 |
+
- `torchdynamo`: None
|
330 |
+
- `ray_scope`: last
|
331 |
+
- `ddp_timeout`: 1800
|
332 |
+
- `torch_compile`: False
|
333 |
+
- `torch_compile_backend`: None
|
334 |
+
- `torch_compile_mode`: None
|
335 |
+
- `dispatch_batches`: None
|
336 |
+
- `split_batches`: None
|
337 |
+
- `include_tokens_per_second`: False
|
338 |
+
- `include_num_input_tokens_seen`: False
|
339 |
+
- `neftune_noise_alpha`: None
|
340 |
+
- `optim_target_modules`: None
|
341 |
+
- `batch_sampler`: no_duplicates
|
342 |
+
- `multi_dataset_batch_sampler`: proportional
|
343 |
+
|
344 |
+
</details>
|
345 |
+
|
346 |
+
### Training Logs
|
347 |
+
<details><summary>Click to expand</summary>
|
348 |
+
|
349 |
+
| Epoch | Step | Training Loss | sts-dev_max_accuracy |
|
350 |
+
|:------:|:-----:|:-------------:|:--------------------:|
|
351 |
+
| 0.0050 | 100 | 4.3364 | - |
|
352 |
+
| 0.0101 | 200 | 4.122 | - |
|
353 |
+
| 0.0151 | 300 | 4.0825 | - |
|
354 |
+
| 0.0202 | 400 | 4.0381 | - |
|
355 |
+
| 0.0252 | 500 | 4.015 | - |
|
356 |
+
| 0.0302 | 600 | 3.9996 | - |
|
357 |
+
| 0.0353 | 700 | 3.9567 | - |
|
358 |
+
| 0.0403 | 800 | 3.9593 | - |
|
359 |
+
| 0.0453 | 900 | 3.9456 | - |
|
360 |
+
| 0.0504 | 1000 | 3.938 | - |
|
361 |
+
| 0.0554 | 1100 | 3.933 | - |
|
362 |
+
| 0.0605 | 1200 | 3.905 | - |
|
363 |
+
| 0.0655 | 1300 | 3.906 | - |
|
364 |
+
| 0.0705 | 1400 | 3.9073 | - |
|
365 |
+
| 0.0756 | 1500 | 3.9193 | - |
|
366 |
+
| 0.0806 | 1600 | 3.9016 | - |
|
367 |
+
| 0.0857 | 1700 | 3.8899 | - |
|
368 |
+
| 0.0907 | 1800 | 3.9 | - |
|
369 |
+
| 0.0957 | 1900 | 3.8983 | - |
|
370 |
+
| 0.1008 | 2000 | 3.876 | - |
|
371 |
+
| 0.1058 | 2100 | 3.9001 | - |
|
372 |
+
| 0.1109 | 2200 | 3.8818 | - |
|
373 |
+
| 0.1159 | 2300 | 3.8788 | - |
|
374 |
+
| 0.1209 | 2400 | 3.8815 | - |
|
375 |
+
| 0.1260 | 2500 | 3.8664 | - |
|
376 |
+
| 0.1310 | 2600 | 3.854 | - |
|
377 |
+
| 0.1360 | 2700 | 3.8674 | - |
|
378 |
+
| 0.1411 | 2800 | 3.8525 | - |
|
379 |
+
| 0.1461 | 2900 | 3.8733 | - |
|
380 |
+
| 0.1512 | 3000 | 3.8538 | - |
|
381 |
+
| 0.1562 | 3100 | 3.8348 | - |
|
382 |
+
| 0.1612 | 3200 | 3.8378 | - |
|
383 |
+
| 0.1663 | 3300 | 3.8504 | - |
|
384 |
+
| 0.1713 | 3400 | 3.8409 | - |
|
385 |
+
| 0.1764 | 3500 | 3.8436 | - |
|
386 |
+
| 0.1814 | 3600 | 3.8422 | - |
|
387 |
+
| 0.1864 | 3700 | 3.8629 | - |
|
388 |
+
| 0.1915 | 3800 | 3.8589 | - |
|
389 |
+
| 0.1965 | 3900 | 3.8572 | - |
|
390 |
+
| 0.2016 | 4000 | 3.8309 | - |
|
391 |
+
| 0.2066 | 4100 | 3.8465 | - |
|
392 |
+
| 0.2116 | 4200 | 3.8311 | - |
|
393 |
+
| 0.2167 | 4300 | 3.8124 | - |
|
394 |
+
| 0.2217 | 4400 | 3.8412 | - |
|
395 |
+
| 0.2267 | 4500 | 3.8228 | - |
|
396 |
+
| 0.2318 | 4600 | 3.8012 | - |
|
397 |
+
| 0.2368 | 4700 | 3.8185 | - |
|
398 |
+
| 0.2419 | 4800 | 3.8242 | - |
|
399 |
+
| 0.2469 | 4900 | 3.7917 | - |
|
400 |
+
| 0.2519 | 5000 | 3.8022 | - |
|
401 |
+
| 0.2570 | 5100 | 3.7991 | - |
|
402 |
+
| 0.2620 | 5200 | 3.7943 | - |
|
403 |
+
| 0.2671 | 5300 | 3.7874 | - |
|
404 |
+
| 0.2721 | 5400 | 3.7987 | - |
|
405 |
+
| 0.2771 | 5500 | 3.7982 | - |
|
406 |
+
| 0.2822 | 5600 | 3.7789 | - |
|
407 |
+
| 0.2872 | 5700 | 3.7837 | - |
|
408 |
+
| 0.2923 | 5800 | 3.7762 | - |
|
409 |
+
| 0.2973 | 5900 | 3.7854 | - |
|
410 |
+
| 0.3023 | 6000 | 3.7719 | - |
|
411 |
+
| 0.3074 | 6100 | 3.7925 | - |
|
412 |
+
| 0.3124 | 6200 | 3.7795 | - |
|
413 |
+
| 0.3174 | 6300 | 3.7725 | - |
|
414 |
+
| 0.3225 | 6400 | 3.7897 | - |
|
415 |
+
| 0.3275 | 6500 | 3.773 | - |
|
416 |
+
| 0.3326 | 6600 | 3.7803 | - |
|
417 |
+
| 0.3376 | 6700 | 3.7476 | - |
|
418 |
+
| 0.3426 | 6800 | 3.7585 | - |
|
419 |
+
| 0.3477 | 6900 | 3.7426 | - |
|
420 |
+
| 0.3527 | 7000 | 3.7529 | - |
|
421 |
+
| 0.3578 | 7100 | 3.7745 | - |
|
422 |
+
| 0.3628 | 7200 | 3.7771 | - |
|
423 |
+
| 0.3678 | 7300 | 3.7598 | - |
|
424 |
+
| 0.3729 | 7400 | 3.7428 | - |
|
425 |
+
| 0.3779 | 7500 | 3.7409 | - |
|
426 |
+
| 0.3829 | 7600 | 3.7569 | - |
|
427 |
+
| 0.3880 | 7700 | 3.7517 | - |
|
428 |
+
| 0.3930 | 7800 | 3.7484 | - |
|
429 |
+
| 0.3981 | 7900 | 3.7415 | - |
|
430 |
+
| 0.4031 | 8000 | 3.7228 | - |
|
431 |
+
| 0.4081 | 8100 | 3.7569 | - |
|
432 |
+
| 0.4132 | 8200 | 3.7421 | - |
|
433 |
+
| 0.4182 | 8300 | 3.7233 | - |
|
434 |
+
| 0.4233 | 8400 | 3.72 | - |
|
435 |
+
| 0.4283 | 8500 | 3.7431 | - |
|
436 |
+
| 0.4333 | 8600 | 3.7258 | - |
|
437 |
+
| 0.4384 | 8700 | 3.73 | - |
|
438 |
+
| 0.4434 | 8800 | 3.7286 | - |
|
439 |
+
| 0.4485 | 8900 | 3.7487 | - |
|
440 |
+
| 0.4535 | 9000 | 3.7359 | - |
|
441 |
+
| 0.4585 | 9100 | 3.7387 | - |
|
442 |
+
| 0.4636 | 9200 | 3.7135 | - |
|
443 |
+
| 0.4686 | 9300 | 3.7219 | - |
|
444 |
+
| 0.4736 | 9400 | 3.7189 | - |
|
445 |
+
| 0.4787 | 9500 | 3.7234 | - |
|
446 |
+
| 0.4837 | 9600 | 3.7333 | - |
|
447 |
+
| 0.4888 | 9700 | 3.7027 | - |
|
448 |
+
| 0.4938 | 9800 | 3.7358 | - |
|
449 |
+
| 0.4988 | 9900 | 3.6959 | - |
|
450 |
+
| 0.5039 | 10000 | 3.7051 | - |
|
451 |
+
| 0.5089 | 10100 | 3.7205 | - |
|
452 |
+
| 0.5140 | 10200 | 3.711 | - |
|
453 |
+
| 0.5190 | 10300 | 3.6898 | - |
|
454 |
+
| 0.5240 | 10400 | 3.7103 | - |
|
455 |
+
| 0.5291 | 10500 | 3.695 | - |
|
456 |
+
| 0.5341 | 10600 | 3.7108 | - |
|
457 |
+
| 0.5392 | 10700 | 3.7226 | - |
|
458 |
+
| 0.5442 | 10800 | 3.7004 | - |
|
459 |
+
| 0.5492 | 10900 | 3.736 | - |
|
460 |
+
| 0.5543 | 11000 | 3.7135 | - |
|
461 |
+
| 0.5593 | 11100 | 3.7148 | - |
|
462 |
+
| 0.5643 | 11200 | 3.7285 | - |
|
463 |
+
| 0.5694 | 11300 | 3.694 | - |
|
464 |
+
| 0.5744 | 11400 | 3.6913 | - |
|
465 |
+
| 0.5795 | 11500 | 3.69 | - |
|
466 |
+
| 0.5845 | 11600 | 3.7249 | - |
|
467 |
+
| 0.5895 | 11700 | 3.6907 | - |
|
468 |
+
| 0.5946 | 11800 | 3.7135 | - |
|
469 |
+
| 0.5996 | 11900 | 3.7172 | - |
|
470 |
+
| 0.6047 | 12000 | 3.7087 | - |
|
471 |
+
| 0.6097 | 12100 | 3.7045 | - |
|
472 |
+
| 0.6147 | 12200 | 3.7043 | - |
|
473 |
+
| 0.6198 | 12300 | 3.693 | - |
|
474 |
+
| 0.6248 | 12400 | 3.6982 | - |
|
475 |
+
| 0.6298 | 12500 | 3.6922 | - |
|
476 |
+
| 0.6349 | 12600 | 3.6857 | - |
|
477 |
+
| 0.6399 | 12700 | 3.6834 | - |
|
478 |
+
| 0.6450 | 12800 | 3.7052 | - |
|
479 |
+
| 0.6500 | 12900 | 3.6935 | - |
|
480 |
+
| 0.6550 | 13000 | 3.6736 | - |
|
481 |
+
| 0.6601 | 13100 | 3.7026 | - |
|
482 |
+
| 0.6651 | 13200 | 3.6846 | - |
|
483 |
+
| 0.6702 | 13300 | 3.704 | - |
|
484 |
+
| 0.6752 | 13400 | 3.6818 | - |
|
485 |
+
| 0.6802 | 13500 | 3.7075 | - |
|
486 |
+
| 0.6853 | 13600 | 3.6688 | - |
|
487 |
+
| 0.6903 | 13700 | 3.6933 | - |
|
488 |
+
| 0.6954 | 13800 | 3.6971 | - |
|
489 |
+
| 0.7004 | 13900 | 3.6785 | - |
|
490 |
+
| 0.7054 | 14000 | 3.7088 | - |
|
491 |
+
| 0.7105 | 14100 | 3.7127 | - |
|
492 |
+
| 0.7155 | 14200 | 3.6996 | - |
|
493 |
+
| 0.7205 | 14300 | 3.6901 | - |
|
494 |
+
| 0.7256 | 14400 | 3.6914 | - |
|
495 |
+
| 0.7306 | 14500 | 3.6659 | - |
|
496 |
+
| 0.7357 | 14600 | 3.6859 | - |
|
497 |
+
| 0.7407 | 14700 | 3.68 | - |
|
498 |
+
| 0.7457 | 14800 | 3.6874 | - |
|
499 |
+
| 0.7508 | 14900 | 3.6854 | - |
|
500 |
+
| 0.7558 | 15000 | 3.671 | - |
|
501 |
+
| 0.7609 | 15100 | 3.6909 | - |
|
502 |
+
| 0.7659 | 15200 | 3.7014 | - |
|
503 |
+
| 0.7709 | 15300 | 3.6828 | - |
|
504 |
+
| 0.7760 | 15400 | 3.6773 | - |
|
505 |
+
| 0.7810 | 15500 | 3.6863 | - |
|
506 |
+
| 0.7861 | 15600 | 3.6892 | - |
|
507 |
+
| 0.7911 | 15700 | 3.6864 | - |
|
508 |
+
| 0.7961 | 15800 | 3.6586 | - |
|
509 |
+
| 0.8012 | 15900 | 3.6639 | - |
|
510 |
+
| 0.8062 | 16000 | 3.6843 | - |
|
511 |
+
| 0.8112 | 16100 | 3.6865 | - |
|
512 |
+
| 0.8163 | 16200 | 3.678 | - |
|
513 |
+
| 0.8213 | 16300 | 3.6825 | - |
|
514 |
+
| 0.8264 | 16400 | 3.7068 | - |
|
515 |
+
| 0.8314 | 16500 | 3.6886 | - |
|
516 |
+
| 0.8364 | 16600 | 3.6905 | - |
|
517 |
+
| 0.8415 | 16700 | 3.6905 | - |
|
518 |
+
| 0.8465 | 16800 | 3.6677 | - |
|
519 |
+
| 0.8516 | 16900 | 3.684 | - |
|
520 |
+
| 0.8566 | 17000 | 3.6872 | - |
|
521 |
+
| 0.8616 | 17100 | 3.6849 | - |
|
522 |
+
| 0.8667 | 17200 | 3.662 | - |
|
523 |
+
| 0.8717 | 17300 | 3.6887 | - |
|
524 |
+
| 0.8768 | 17400 | 3.6999 | - |
|
525 |
+
| 0.8818 | 17500 | 3.6916 | - |
|
526 |
+
| 0.8868 | 17600 | 3.6853 | - |
|
527 |
+
| 0.8919 | 17700 | 3.6971 | - |
|
528 |
+
| 0.8969 | 17800 | 3.6846 | - |
|
529 |
+
| 0.9019 | 17900 | 3.6701 | - |
|
530 |
+
| 0.9070 | 18000 | 3.6911 | - |
|
531 |
+
| 0.9120 | 18100 | 3.7021 | - |
|
532 |
+
| 0.9171 | 18200 | 3.6851 | - |
|
533 |
+
| 0.9221 | 18300 | 3.6924 | - |
|
534 |
+
| 0.9271 | 18400 | 3.6644 | - |
|
535 |
+
| 0.9322 | 18500 | 3.6674 | - |
|
536 |
+
| 0.9372 | 18600 | 3.6962 | - |
|
537 |
+
| 0.9423 | 18700 | 3.6759 | - |
|
538 |
+
| 0.9473 | 18800 | 3.6839 | - |
|
539 |
+
| 0.9523 | 18900 | 3.6822 | - |
|
540 |
+
| 0.9574 | 19000 | 3.6947 | - |
|
541 |
+
| 0.9624 | 19100 | 3.6589 | - |
|
542 |
+
| 0.9674 | 19200 | 3.6817 | - |
|
543 |
+
| 0.9725 | 19300 | 3.6754 | - |
|
544 |
+
| 0.9775 | 19400 | 3.6947 | - |
|
545 |
+
| 0.9826 | 19500 | 3.6785 | - |
|
546 |
+
| 0.9876 | 19600 | 3.6776 | - |
|
547 |
+
| 0.9926 | 19700 | 3.6791 | - |
|
548 |
+
| 0.9977 | 19800 | 3.6795 | - |
|
549 |
+
| 1.0 | 19846 | - | 0.9971 |
|
550 |
+
|
551 |
+
</details>
|
552 |
+
|
553 |
+
### Framework Versions
|
554 |
+
- Python: 3.10.14
|
555 |
+
- Sentence Transformers: 3.0.1
|
556 |
+
- Transformers: 4.40.0
|
557 |
+
- PyTorch: 2.3.0+cu121
|
558 |
+
- Accelerate: 0.33.0
|
559 |
+
- Datasets: 2.20.0
|
560 |
+
- Tokenizers: 0.19.1
|
561 |
+
|
562 |
+
## Citation
|
563 |
+
|
564 |
+
### BibTeX
|
565 |
+
|
566 |
+
#### Sentence Transformers
|
567 |
+
```bibtex
|
568 |
+
@inproceedings{reimers-2019-sentence-bert,
|
569 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
570 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
571 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
572 |
+
month = "11",
|
573 |
+
year = "2019",
|
574 |
+
publisher = "Association for Computational Linguistics",
|
575 |
+
url = "https://arxiv.org/abs/1908.10084",
|
576 |
+
}
|
577 |
+
```
|
578 |
+
|
579 |
+
#### TripletLoss
|
580 |
+
```bibtex
|
581 |
+
@misc{hermans2017defense,
|
582 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
583 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
584 |
+
year={2017},
|
585 |
+
eprint={1703.07737},
|
586 |
+
archivePrefix={arXiv},
|
587 |
+
primaryClass={cs.CV}
|
588 |
+
}
|
589 |
+
```
|
590 |
+
|
591 |
+
<!--
|
592 |
+
## Glossary
|
593 |
+
|
594 |
+
*Clearly define terms in order to be accessible across audiences.*
|
595 |
+
-->
|
596 |
+
|
597 |
+
<!--
|
598 |
+
## Model Card Authors
|
599 |
+
|
600 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
601 |
+
-->
|
602 |
+
|
603 |
+
<!--
|
604 |
+
## Model Card Contact
|
605 |
+
|
606 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
607 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.40.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.40.0",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45b5d4ad5b411ccff6bf9caa90f16d59f4d85903207553c57533577ebe1f40ed
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|