emozilla commited on
Commit
c7b2bc8
·
1 Parent(s): c17e1a8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - emozilla/yarn-train-tokenized-16k-mistral
4
+ metrics:
5
+ - perplexity
6
+ library_name: transformers
7
+ ---
8
+
9
+ # Model Card: Nous-Yarn-Mistral-7b-128k
10
+
11
+ [Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
12
+ [GitHub](https://github.com/jquesnelle/yarn)
13
+ ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/mistral/data/proofpile-long-small-mistral.csv.png)
14
+
15
+ ## Model Description
16
+
17
+ Nous-Yarn-Mistral-7b-128k is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method.
18
+ It is an extension of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and supports a 128k token context window.
19
+
20
+ To use, pass `trust_remote_code=True` when loading the model, for example
21
+
22
+ ```python
23
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Mistral-7b-128k",
24
+ use_flash_attention_2=True,
25
+ torch_dtype=torch.bfloat16,
26
+ device_map="auto",
27
+ trust_remote_code=True)
28
+ ```
29
+
30
+ ## Benchmarks
31
+
32
+ | Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
33
+ |-------|---------------:|------:|----------:|-----:|------------:|
34
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8K | 59.98 | 83.31 | 64.16 | 42.15 |
35
+ | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64K | 59.38 | 81.21 | 61.32 | 42.50 |
36
+ | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128K | 58.87 | 80.58 | 60.64 | 42.46 |
37
+
38
+ ## Collaborators
39
+
40
+ - [bloc97](https://github.com/bloc97): Methods, paper and evals
41
+ - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
42
+ - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
43
+ - [honglu2875](https://github.com/honglu2875): Paper and evals
44
+
45
+ The authors would like to thank LAION AI for their support of compute for this model.
46
+ It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.