--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true datasets: - hahminlew/kream-product-blip-captions language: - en library_name: diffusers --- # LoRA text2image fine-tuning - NouRed/sd-fashion-products These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the hahminlew/kream-product-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.jpg) ![img_1](./image_1.jpg) ![img_2](./image_2.jpg) ![img_3](./image_3.jpg) ## Usage ```python import torch from diffusers import DiffusionPipeline # Load Previous Pipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2", revision=None, variant=None, torch_dtype=torch_dtype=torch.float32 ) pipeline = pipeline.to(accelerator.device) # Load attention processors pipeline.unet.load_attn_procs("NouRed/sd-fashion-products") # Run Inference generator = torch.Generator(device=accelerator.device) seed = 42 if seed is not None: generator = generator.manual_seed(seed) prompt = "outer, The North Face x Supreme White Label Nuptse Down Jacket Cream, a photography of a white puffer jacket with a red box logo on the front." image = pipeline(prompt, num_inference_steps=30, generator=generator).images[0] # Save Generated Product image.save("red_box_jacket.png") ```