Segformer-Keras / Segformer.py
NoteDance's picture
Update Segformer.py
2868def verified
import tensorflow as tf
from tensorflow.keras.layers import Conv2d,LayerNormalization,ZeroPadding2D,UpSampling2D,Activation
from tensorflow.keras import Model
from einops import rearrange
from math import sqrt
from functools import partial
# helpers
def exists(val):
return val is not None
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
# classes
class DsConv2d:
def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True):
self.net = tf.keras.Sequential()
self.net.add(Conv2d(dim_in, kernel_size = kernel_size, strides = stride, use_bias = bias))
self.net.add(ZeroPadding2D(padding))
self.net.add(Conv2d(dim_out, kernel_size = 1, use_bias = bias))
def __call__(self, x):
return self.net(x)
class LayerNorm(tf.keras.layers.Layer):
def __init__(self, dim, eps = 1e-5):
self.eps = eps
self.g = self.add_weight(
name='g',
shape=(1, dim, 1, 1),
initializer=tf.keras.initializers.Ones(),
trainable=True
)
self.b = self.add_weight(
name='b',
shape=(1, dim, 1, 1),
initializer=tf.keras.initializers.Zeros(),
trainable=True
)
def __call__(self, x):
std = tf.math.sqrt(tf.math.reduce_variance(x, axis=1, keepdims=True))
mean = tf.reduce_mean(x, axis= 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
class PreNorm:
def __init__(self, dim, fn):
self.fn = fn
self.norm = LayerNormalization()
def __call__(self, x):
return self.fn(self.norm(x))
class EfficientSelfAttention:
def __init__(
self,
dim,
heads,
reduction_ratio
):
self.scale = (dim // heads) ** -0.5
self.heads = heads
self.to_q = Conv2d(dim, 1, use_bias = False)
self.to_kv = Conv2d(dim * 2, reduction_ratio, strides = reduction_ratio, use_bias = False)
self.to_out = Conv2d(dim, 1, use_bias = False)
def __call__(self, x):
h, w = x.shape[1], x.shape[2]
heads = self.heads
q, k, v = (self.to_q(x), *tf.split(self.to_kv(x), num_or_size_splits=2, axis=-1))
q, k, v = map(lambda t: rearrange(t, 'b x y (h c) -> (b h) (x y) c', h = heads), (q, k, v))
sim = tf.einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = tf.nn.softmax(sim)
out = tf.einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) c -> b x y (h c)', h = heads, x = h, y = w)
return self.to_out(out)
class MixFeedForward:
def __init__(
self,
dim,
expansion_factor
):
hidden_dim = dim * expansion_factor
self.net = tf.keras.Sequential()
self.net.add(Conv2d(hidden_dim, 1))
self.net.add(DsConv2d(hidden_dim, hidden_dim, 3, padding = 1))
self.net.add(Activation('gelu'))
self.net.add(Conv2d(dim, 1))
def __call__(self, x):
return self.net(x)
class Unfold:
def __init__(self, kernel, stride, padding):
self.kernel = kernel
self.stride = stride
self.padding = padding
self.zeropadding2d = ZeroPadding2D(padding)
def __call__(self, x):
x = self.zeropadding2d(x)
x = tf.image.extract_patches(x, sizes=[1, self.kernel, self.kernel, 1], strides=[1, self.stride, self.stride, 1], rates=[1, 1, 1, 1], padding='VALID')
x = tf.reshape(x, (x.shape[0], -1, x.shape[-1]))
return x
class MiT:
def __init__(
self,
channels,
dims,
heads,
ff_expansion,
reduction_ratio,
num_layers
):
stage_kernel_stride_pad = ((7, 4, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1))
dims = (channels, *dims)
dim_pairs = list(zip(dims[:-1], dims[1:]))
self.stages = []
for (dim_in, dim_out), (kernel, stride, padding), num_layers, ff_expansion, heads, reduction_ratio in zip(dim_pairs, stage_kernel_stride_pad, num_layers, ff_expansion, heads, reduction_ratio):
get_overlap_patches = Unfold(kernel, stride, padding)
overlap_patch_embed = Conv2d(dim_out, 1)
layers = []
for _ in range(num_layers):
layers.append([
PreNorm(dim_out, EfficientSelfAttention(dim = dim_out, heads = heads, reduction_ratio = reduction_ratio)),
PreNorm(dim_out, MixFeedForward(dim = dim_out, expansion_factor = ff_expansion)),
])
self.stages.append([
get_overlap_patches,
overlap_patch_embed,
layers
])
def __call__(
self,
x,
return_layer_outputs = False
):
h, w = x.shape[1], x.shape[2]
layer_outputs = []
for (get_overlap_patches, overlap_embed, layers) in self.stages:
x = get_overlap_patches(x)
num_patches = x.shape[-2]
ratio = int(sqrt((h * w) / num_patches))
x = rearrange(x, 'b (h w) c -> b h w c', h = h // ratio)
x = overlap_embed(x)
for (attn, ff) in layers:
x = attn(x) + x
x = ff(x) + x
layer_outputs.append(x)
ret = x if not return_layer_outputs else layer_outputs
return ret
class Segformer(Model):
def __init__(
self,
dims = (32, 64, 160, 256),
heads = (1, 2, 5, 8),
ff_expansion = (8, 8, 4, 4),
reduction_ratio = (8, 4, 2, 1),
num_layers = 2,
channels = 3,
decoder_dim = 256,
num_classes = 4
):
super(Segformer, self).__init__()
dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers))
assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values'
self.mit = MiT(
channels = channels,
dims = dims,
heads = heads,
ff_expansion = ff_expansion,
reduction_ratio = reduction_ratio,
num_layers = num_layers
)
self.to_fused = []
for i, dim in enumerate(dims):
to_fused = tf.keras.Sequential()
to_fused.add(Conv2d(decoder_dim, 1))
to_fused.add(UpSampling2D(2 ** i))
self.to_fused.append(to_fused)
self.to_segmentation = tf.keras.Sequential()
self.to_segmentation.add(Conv2d(decoder_dim, 1))
self.to_segmentation.add(Conv2d(num_classes, 1))
def __call__(self, x):
layer_outputs = self.mit(x, return_layer_outputs = True)
fused = [to_fused(output) for output, to_fused in zip(layer_outputs, self.to_fused)]
fused = tf.concat(fused, axis = -1)
return self.to_segmentation(fused)