NoteDance commited on
Commit
65d3bdd
·
verified ·
1 Parent(s): 1c0ac90

Upload Llama3.py

Browse files
Files changed (1) hide show
  1. Llama3.py +287 -0
Llama3.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
3
+ import tensorflow as tf
4
+ from tensorflow.keras.layers import Embedding,Dense
5
+ from tensorflow.keras import Model
6
+
7
+ import math
8
+ from dataclasses import dataclass
9
+ from typing import Optional
10
+
11
+
12
+ @dataclass
13
+ class ModelArgs:
14
+ dim: int = 4096
15
+ n_layers: int = 32
16
+ n_heads: int = 32
17
+ n_kv_heads: Optional[int] = None
18
+ vocab_size: int = -1
19
+ multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
20
+ ffn_dim_multiplier: Optional[float] = None
21
+ norm_eps: float = 1e-5
22
+ rope_theta: float = 500000
23
+
24
+ max_batch_size: int = 32
25
+ max_seq_len: int = 2048
26
+
27
+
28
+ class RMSNorm:
29
+ def __init__(self, dim: int, eps: float = 1e-6):
30
+ self.eps = eps
31
+ self.weight = tf.Variable(tf.ones((dim)))
32
+
33
+ def _norm(self, x):
34
+ return x * tf.math.rsqrt(tf.reduce_mean(tf.pow(x, 2), -1, keepdims=True) + self.eps)
35
+
36
+ def __call__(self, x):
37
+ output = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype)
38
+ return output * self.weight
39
+
40
+
41
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
42
+ freqs = 1.0 / (theta ** (tf.cast(tf.range(0, dim, 2)[: (dim // 2)], 'float32') / dim))
43
+ t = tf.range(end, dtype='float32')
44
+ freqs = tf.experimental.numpy.outer(t, freqs)
45
+ freqs_cis = tf.complex(tf.ones_like(freqs), freqs)
46
+ real_part = tf.math.cos(freqs)
47
+ imag_part = tf.math.sin(freqs)
48
+ freqs_cis = tf.complex(real_part, imag_part) # complex64
49
+ return freqs_cis
50
+
51
+
52
+ def reshape_for_broadcast(freqs_cis, x):
53
+ ndim = x.ndim
54
+ assert 0 <= 1 < ndim
55
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1])
56
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
57
+ return tf.reshape(freqs_cis, shape)
58
+
59
+
60
+ def apply_rotary_emb(
61
+ xq,
62
+ xk,
63
+ freqs_cis,
64
+ ):
65
+ xq = tf.reshape(tf.cast(xq, 'float32'), (xq.shape[:-1] + (xq.shape[-1] // 2, 2)))
66
+ real_part = xq[..., 0]
67
+ imag_part = xq[..., 1]
68
+ xq_ = tf.complex(real_part, imag_part)
69
+ xk = tf.reshape(tf.cast(xk, 'float32'), (xk.shape[:-1] + (xk.shape[-1] // 2, 2)))
70
+ real_part = xk[..., 0]
71
+ imag_part = xk[..., 1]
72
+ xk_ = tf.complex(real_part, imag_part)
73
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
74
+ xq_freqs_cis = xq_ * freqs_cis
75
+ xq_out = tf.stack([tf.math.real(xq_freqs_cis), tf.math.imag(xq_freqs_cis)], axis=-1)
76
+ shape = xq_out.shape
77
+ xq_out = tf.reshape(xq_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
78
+ xk_freqs_cis = xk_ * freqs_cis
79
+ xk_out = tf.stack([tf.math.real(xk_freqs_cis), tf.math.imag(xk_freqs_cis)], axis=-1)
80
+ shape = xk_out.shape
81
+ xk_out = tf.reshape(xk_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
82
+ return tf.cast(xq_out, xq.dtype), tf.cast(xk_out, xk.dtype)
83
+
84
+
85
+ def repeat_kv(x, n_rep: int):
86
+ bs, slen, n_kv_heads, head_dim = x.shape
87
+ if n_rep == 1:
88
+ return x
89
+ return tf.reshape(tf.tile(x[:, :, :, None, :], [1, 1, 1, n_rep, 1]), (bs, slen, n_kv_heads * n_rep, head_dim))
90
+
91
+
92
+ class Attention:
93
+ def __init__(self, args: ModelArgs):
94
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
95
+ model_parallel_size = 1
96
+ self.n_local_heads = args.n_heads // model_parallel_size
97
+ self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
98
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
99
+ self.head_dim = args.dim // args.n_heads
100
+
101
+ self.wq = Dense(
102
+ args.n_heads * self.head_dim,
103
+ use_bias=False,
104
+ )
105
+ self.wk = Dense(
106
+ self.n_kv_heads * self.head_dim,
107
+ use_bias=False,
108
+ )
109
+ self.wv = Dense(
110
+ self.n_kv_heads * self.head_dim,
111
+ use_bias=False,
112
+ )
113
+ self.wo = Dense(
114
+ args.dim,
115
+ use_bias=False,
116
+ )
117
+
118
+ self.cache_k = tf.Variable(tf.zeros(
119
+ (
120
+ args.max_batch_size,
121
+ args.max_seq_len,
122
+ self.n_local_kv_heads,
123
+ self.head_dim,
124
+ )
125
+ ), trainable=False)
126
+ self.cache_v = tf.Variable(tf.zeros(
127
+ (
128
+ args.max_batch_size,
129
+ args.max_seq_len,
130
+ self.n_local_kv_heads,
131
+ self.head_dim,
132
+ )
133
+ ), trainable=False)
134
+
135
+ def __call__(
136
+ self,
137
+ x,
138
+ start_pos: int,
139
+ freqs_cis,
140
+ mask,
141
+ ):
142
+ bsz, seqlen, _ = x.shape
143
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
144
+
145
+ xq = tf.reshape(xq, (bsz, seqlen, self.n_local_heads, self.head_dim))
146
+ xk = tf.reshape(xk, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
147
+ xv = tf.reshape(xv, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
148
+
149
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
150
+
151
+ self.cache_k = tf.cast(self.cache_k, xq.dtype)
152
+ self.cache_v = tf.cast(self.cache_v, xq.dtype)
153
+
154
+ self.cache_k[:bsz, start_pos : start_pos + seqlen].assign(xk)
155
+ self.cache_v[:bsz, start_pos : start_pos + seqlen].assign(xv)
156
+
157
+ keys = self.cache_k[:bsz, : start_pos + seqlen]
158
+ values = self.cache_v[:bsz, : start_pos + seqlen]
159
+
160
+ # repeat k/v heads if n_kv_heads < n_heads
161
+ keys = repeat_kv(
162
+ keys, self.n_rep
163
+ ) # (bs, cache_len + seqlen, n_local_heads, head_dim)
164
+ values = repeat_kv(
165
+ values, self.n_rep
166
+ ) # (bs, cache_len + seqlen, n_local_heads, head_dim)
167
+
168
+ xq = tf.transpose(xq, (0, 2, 1, 3)) # (bs, n_local_heads, seqlen, head_dim)
169
+ keys = tf.transpose(keys, (0, 2, 1, 3)) # (bs, n_local_heads, cache_len + seqlen, head_dim)
170
+ values = tf.transpose(values,
171
+ (0, 2, 1, 3)
172
+ ) # (bs, n_local_heads, cache_len + seqlen, head_dim)
173
+ scores = tf.matmul(xq, tf.transpose(keys, (0, 1, 3, 2))) / math.sqrt(self.head_dim)
174
+ if mask is not None:
175
+ scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
176
+ scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32')), xq.dtype)
177
+ output = tf.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
178
+ output = tf.reshape(tf.transpose(output, (0, 2, 1, 3)), (bsz, seqlen, -1))
179
+ return self.wo(output)
180
+
181
+
182
+ class FeedForward:
183
+ def __init__(
184
+ self,
185
+ dim: int,
186
+ hidden_dim: int,
187
+ multiple_of: int,
188
+ ffn_dim_multiplier: Optional[float],
189
+ ):
190
+ hidden_dim = int(2 * hidden_dim / 3)
191
+ # custom dim factor multiplier
192
+ if ffn_dim_multiplier is not None:
193
+ hidden_dim = int(ffn_dim_multiplier * hidden_dim)
194
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
195
+
196
+ self.w1 = Dense(
197
+ hidden_dim, use_bias=False
198
+ )
199
+ self.w2 = Dense(
200
+ dim, use_bias=False
201
+ )
202
+ self.w3 = Dense(
203
+ hidden_dim, use_bias=False
204
+ )
205
+
206
+ def __call__(self, x):
207
+ return self.w2(tf.nn.silu(self.w1(x)) * self.w3(x))
208
+
209
+
210
+ class TransformerBlock:
211
+ def __init__(self, layer_id: int, args: ModelArgs):
212
+ self.n_heads = args.n_heads
213
+ self.dim = args.dim
214
+ self.head_dim = args.dim // args.n_heads
215
+ self.attention = Attention(args)
216
+ self.feed_forward = FeedForward(
217
+ dim=args.dim,
218
+ hidden_dim=4 * args.dim,
219
+ multiple_of=args.multiple_of,
220
+ ffn_dim_multiplier=args.ffn_dim_multiplier,
221
+ )
222
+ self.layer_id = layer_id
223
+ self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
224
+ self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
225
+
226
+ def __call__(
227
+ self,
228
+ x,
229
+ start_pos,
230
+ freqs_cis,
231
+ mask,
232
+ ):
233
+ h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
234
+ out = h + self.feed_forward(self.ffn_norm(h))
235
+ return out
236
+
237
+
238
+ class Llama3(Model):
239
+ def __init__(self, params: ModelArgs):
240
+ self.params = params
241
+ self.vocab_size = params.vocab_size
242
+ self.n_layers = params.n_layers
243
+
244
+ self.tok_embeddings = Embedding(
245
+ params.vocab_size, params.dim
246
+ )
247
+
248
+ self.layers_ = []
249
+ for layer_id in range(params.n_layers):
250
+ self.layers_.append(TransformerBlock(layer_id, params))
251
+
252
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
253
+ self.output_ = Dense(
254
+ params.vocab_size, use_bias=False
255
+ )
256
+
257
+ self.freqs_cis = precompute_freqs_cis(
258
+ params.dim // params.n_heads,
259
+ params.max_seq_len * 2,
260
+ params.rope_theta,
261
+ )
262
+
263
+ def __call__(self, tokens, start_pos: int):
264
+ _bsz, seqlen = tokens.shape
265
+ h = self.tok_embeddings(tokens)
266
+ self.freqs_cis = self.freqs_cis
267
+ freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
268
+
269
+ mask = None
270
+ if seqlen > 1:
271
+ mask = tf.fill([seqlen, seqlen], float("-inf"))
272
+
273
+ mask = tf.linalg.band_part(mask, 0, -1)
274
+ mask = mask - tf.linalg.band_part(mask, 0, 0)
275
+
276
+ # When performing key-value caching, we compute the attention scores
277
+ # only for the new sequence. Thus, the matrix of scores is of size
278
+ # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
279
+ # j > cache_len + i, since row i corresponds to token cache_len + i.
280
+ mask = tf.linalg.set_diag(mask, tf.zeros(seqlen))
281
+ mask = tf.cast(mask, h.dtype)
282
+
283
+ for layer in self.layers_:
284
+ h = layer(h, start_pos, freqs_cis, mask)
285
+ h = self.norm(h)
286
+ output = tf.cast(self.output_(h), 'float32')
287
+ return output