--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "האיש האחרון עלי אדמות ישב לבד בחדרו כשלפתע נשמעה נקישה" - text: "שלום, קרואים לי" - text: "הארי פוטר חייך חיוך נבוך" - text: "החתול שלך מאוד חמוד ו" license: mit --- # distilgpt2-base-pretrained-he A tiny GPT2 based Hebrew text generation model initially trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. Then was further fine-tuned on GPU. ## Dataset ### oscar (unshuffled deduplicated he) - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he) The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. ### CC-100 (he) - [HomePage](https://data.statmt.org/cc-100/) This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. ### Misc * Hebrew Twitter * Wikipedia * Various other sources ## Training * Done on a TPUv3-8 VM using [Huggingface's clm-flax example script](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py)
* I have made a list of items which might make it easier for other to use this script. The list was posted to [This discussion forum](/static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fideas-for-beginner-friendlier-tpu-vm-clm-training%2F8351) * Further training was performed on GPU ## Usage #### Simple usage sample code ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline def main(): model_name="Norod78/distilgpt2-base-pretrained-he" prompt_text = "שלום, קוראים לי" generated_max_length = 192 print("Loading model...") model = AutoModelForCausalLM.from_pretrained(model_name) print('Loading Tokenizer...') tokenizer = AutoTokenizer.from_pretrained(model_name) text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) print("Generating text...") result = text_generator(prompt_text, num_return_sequences=1, batch_size=1, do_sample=True, top_k=40, top_p=0.92, temperature = 1, repetition_penalty=5.0, max_length = generated_max_length) print("result = " + str(result)) if __name__ == '__main__': main() ```