brian-yu-nexusflow
commited on
Commit
·
68fca60
1
Parent(s):
e4d91c9
Update README.md
Browse files
README.md
CHANGED
@@ -49,12 +49,75 @@ NexusRaven is an open-source and commercially viable function calling LLM that s
|
|
49 |
## NexusRaven model usage
|
50 |
NexusRaven accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call.
|
51 |
|
52 |
-
NexusRaven is highly compatible with langchain. See [langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/langchain_example.py). An example without langchain can be found in [non_langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/non_langchain_example.py)
|
53 |
|
54 |
Please note that the model will reflect on the answer sometimes, so we highly recommend stopping the model generation at a stopping criteria of `["\nReflection:"]`, to avoid spending unnecessary tokens during inference, but the reflection might help in some rare cases. This is reflected in our langchain example.
|
55 |
|
|
|
|
|
56 |
The "Initial Answer" can be executed to run the function.
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
## Training procedure
|
60 |
|
|
|
49 |
## NexusRaven model usage
|
50 |
NexusRaven accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call.
|
51 |
|
52 |
+
NexusRaven is highly compatible with langchain. See [langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/langchain_example.py). An example without langchain can be found in [non_langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/non_langchain_example.py).
|
53 |
|
54 |
Please note that the model will reflect on the answer sometimes, so we highly recommend stopping the model generation at a stopping criteria of `["\nReflection:"]`, to avoid spending unnecessary tokens during inference, but the reflection might help in some rare cases. This is reflected in our langchain example.
|
55 |
|
56 |
+
More information about how to prompt the model can be found in [prompting_readme.md](prompting_readme.md).
|
57 |
+
|
58 |
The "Initial Answer" can be executed to run the function.
|
59 |
|
60 |
+
### Quickstart
|
61 |
+
You can run the model on a GPU using the following code.
|
62 |
+
```python
|
63 |
+
# Please `pip install transformers accelerate`
|
64 |
+
from transformers import pipeline
|
65 |
+
|
66 |
+
|
67 |
+
pipeline = pipeline(
|
68 |
+
"text-generation",
|
69 |
+
model="Nexusflow/NexusRaven-13B",
|
70 |
+
torch_dtype="auto",
|
71 |
+
device_map="auto",
|
72 |
+
)
|
73 |
+
|
74 |
+
prompt_template = """
|
75 |
+
<human>:
|
76 |
+
OPTION:
|
77 |
+
<func_start>def hello_world(n : int)<func_end>
|
78 |
+
<docstring_start>
|
79 |
+
\"\"\"
|
80 |
+
Prints hello world to the user.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
n (int) : Number of times to print hello world.
|
84 |
+
\"\"\"
|
85 |
+
<docstring_end>
|
86 |
+
|
87 |
+
OPTION:
|
88 |
+
<func_start>def hello_universe(n : int)<func_end>
|
89 |
+
<docstring_start>
|
90 |
+
\"\"\"
|
91 |
+
Prints hello universe to the user.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
n (int) : Number of times to print hello universe.
|
95 |
+
\"\"\"
|
96 |
+
<docstring_end>
|
97 |
+
|
98 |
+
User Query: Question: {question}
|
99 |
+
|
100 |
+
Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>
|
101 |
+
"""
|
102 |
+
prompt = prompt_template.format(question="Please print hello world 10 times.")
|
103 |
+
|
104 |
+
result = pipeline(prompt, max_new_tokens=100, return_full_text=False, do_sample=False)[0]["generated_text"]
|
105 |
+
|
106 |
+
# Get the "Initial Call" only
|
107 |
+
start_str = "Initial Answer: "
|
108 |
+
end_str = "\nReflection: "
|
109 |
+
start_idx = result.find(start_str) + len(start_str)
|
110 |
+
end_idx = result.find(end_str)
|
111 |
+
function_call = result[start_idx: end_idx]
|
112 |
+
|
113 |
+
print (f"Generated Call: {function_call}")
|
114 |
+
```
|
115 |
+
This will output:
|
116 |
+
```text
|
117 |
+
Generated Call: hello_world(10)
|
118 |
+
```
|
119 |
+
Which can be executed.
|
120 |
+
|
121 |
|
122 |
## Training procedure
|
123 |
|