File size: 2,737 Bytes
17e74ff
 
 
 
 
 
 
 
 
 
 
4323373
 
 
 
 
 
17e74ff
 
 
 
4323373
 
 
15f4e1b
4323373
 
 
17e74ff
4323373
17e74ff
 
 
 
 
 
4244167
 
 
 
 
 
 
 
17e74ff
4244167
 
 
17e74ff
4244167
17e74ff
4244167
17e74ff
4244167
 
17e74ff
4244167
 
 
 
 
 
 
 
 
 
 
17e74ff
 
d7193d2
17e74ff
 
4244167
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: other
language:
- en
library_name: transformers
tags:
- RLHF
- Nexusflow
- Athene
- Chat Model
---
# Athene-V2-Chat-72B: Rivaling GPT-4o across Benchmarks

<p align="center">
<a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="https://discord.gg/HDSVmNAs3y" target="_blank">Nexusflow Discord</a> 
</p>


We introduce Athene-V2-Chat-72B, an open-weights LLM that rivals GPT-4o across benchmarks. It is trained through RLHF based off Qwen-2.5-72B.
Athene-V2-Chat-72B excels in chat, math and coding. Its sister model, [Athene-V2-Agent-72B](https://huggingface.co/Nexusflow/Athene-V2-Chat), surpasses GPT-4o in complex function calling and agent applications.

Benchmark performance:

<p align="center" width="100%">
<a><img src="benchmark.jpg" alt="Benchmark" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

- **Developed by:** The Nexusflow Team
- **Model type:** Chat Model
- **Finetuned from model:** [Qwen 2.5 72B](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
- **License**: [Nexusflow Research License](https://huggingface.co/Nexusflow/Athene-V2-Chat/blob/main/Nexusflow_Research_License.pdf)
- **Blog**: https://nexusflow.ai/blogs/athene-V2

## Usage
Athene-V2-Chat uses the same chat template as Qwen 2.5 72B. Below is an example simple usage using the Transformers library.
```Python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Nexusflow/Athene-V2-Chat"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

We found that by adding system prompts that enforce the model to think step by step, the model can do even better in math and problems like counting `r`s in strawberry. For fairness consideration we **do not** include such system prompt during chat evaluation.

## Acknowledgment
We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of testing the model. We would like to thank Qwen Team and the open source community for their efforts in providing the datasets and base models.