File size: 2,816 Bytes
17e74ff
 
 
 
 
 
 
 
 
 
 
4323373
 
 
 
 
 
17e74ff
4d7a1e9
 
17e74ff
4323373
 
 
15f4e1b
4323373
 
 
17e74ff
4d7a1e9
f12e910
17e74ff
 
 
 
4d7a1e9
17e74ff
4244167
 
 
 
 
 
 
 
17e74ff
4244167
 
4d7a1e9
 
17e74ff
4244167
17e74ff
4d7a1e9
4244167
17e74ff
4244167
 
17e74ff
4d7a1e9
4244167
 
 
 
4d7a1e9
4244167
4d7a1e9
4244167
 
 
 
 
17e74ff
 
4d7a1e9
17e74ff
 
4244167
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: other
language:
- en
library_name: transformers
tags:
- RLHF
- Nexusflow
- Athene
- Chat Model
---
# Athene-V2-Chat-72B: Rivaling GPT-4o across Benchmarks

<p align="center">
<a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="https://discord.gg/HDSVmNAs3y" target="_blank">Nexusflow Discord</a> 
</p>


We introduce Athene-V2-Chat-72B, an open-weights LLM on-par with GPT-4o across benchmarks. It is trained through RLHF with Qwen-2.5-72B-Instruct as base model.
Athene-V2-Chat-72B excels in chat, math, and coding. Its sister model, [Athene-V2-Agent-72B](https://huggingface.co/Nexusflow/Athene-V2-Chat), surpasses GPT-4o in complex function calling and agentic applications.

Benchmark performance:

<p align="center" width="100%">
<a><img src="benchmark.jpg" alt="Benchmark" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

- **Developed by:** The Nexusflow Team
- **Model type:** Chat Model
- **Finetuned from model:** [Qwen 2.5 72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
- **License**: [Nexusflow Research License](https://huggingface.co/Nexusflow/Athene-V2-Chat/blob/main/Nexusflow_Research_License_.pdf)
- **Blog**: https://nexusflow.ai/blogs/athene-V2

## Usage
Athene-V2-Chat uses the same chat template as Qwen 2.5 72B. Below is an example simple usage using the Transformers library.

```Python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Nexusflow/Athene-V2-Chat"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a Python function to return the nth Fibonacci number in log n runtime."

messages = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=2048
)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

Note that by adding a system prompt that encourages the model to think step by step, the model can improve further on difficult math queries and problems like counting `r`s in strawberry. For fairness consideration we **do not** include such system prompt during chat evaluation.

## Acknowledgment
We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of testing the model. We would like to thank Qwen Team and the open source community for their efforts in providing the datasets and base models.