Image Classification
Transformers
Safetensors
English
swin
vision
Inference Endpoints
NeuronZero commited on
Commit
5810f7d
·
verified ·
1 Parent(s): 4a2ad50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -26,23 +26,24 @@ The Swin Transformer is a type of Vision Transformer. It builds hierarchical fea
26
 
27
  ### How to use
28
 
29
- Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
30
 
31
  ```python
32
- from transformers import AutoImageProcessor, SwinForImageClassification
33
  from PIL import Image
34
  import requests
35
 
36
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
37
- image = Image.open(requests.get(url, stream=True).raw)
38
 
39
- processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-patch4-window7-224-in22k")
40
- model = SwinForImageClassification.from_pretrained("microsoft/swin-base-patch4-window7-224-in22k")
 
 
41
 
42
  inputs = processor(images=image, return_tensors="pt")
43
  outputs = model(**inputs)
44
  logits = outputs.logits
45
- # model predicts one of the 1000 ImageNet classes
46
  predicted_class_idx = logits.argmax(-1).item()
47
  print("Predicted class:", model.config.id2label[predicted_class_idx])
48
  ```
 
26
 
27
  ### How to use
28
 
29
+ Here is how to use this model to identify meningioma tumor from a MRI scan:
30
 
31
  ```python
32
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
33
  from PIL import Image
34
  import requests
35
 
36
+ processor = AutoImageProcessor.from_pretrained("NeuronZero/MRI-Reader")
37
+ model = AutoModelForImageClassification.from_pretrained("NeuronZero/MRI-Reader")
38
 
39
+ # Dataset url: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
40
+
41
+ image_url = "https://storage.googleapis.com/kagglesdsdata/datasets/672377/1183165/Testing/meningioma_tumor/image%28112%29.jpg?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=databundle-worker-v2%40kaggle-161607.iam.gserviceaccount.com%2F20240326%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240326T125018Z&X-Goog-Expires=345600&X-Goog-SignedHeaders=host&X-Goog-Signature=32461d8d00888de5030d0dac653ecf5301c79a9445320a29c515713611fc8ec5bd6de1f1be490041f0dd937d7165f2bd3176ca926f2f33787a6ca7dbae1db2ce0b3a482a27a6258d4fe64c92ef7004c81488bfede784e50f22742e214cc303e8e9a52c6b4bc1db20e8aafba80589e87028e2f3212436c45fd7bc0a6978af3c2a2a5cbc25dcddf1489aecacaeebc75b93b2e111d391cf82c50a38906f88eec30e928285f043527972eed6d0dd2cd53b7e61c1be82bbefd6f8f38ffe438155e0dcf386425693a61c8c5857d6f4dbea7a8351e496160da261778c5f26d5496243f863ca65caf2b630701a998e79ce0bfa32291b19410a0f72d3399cea86b695c7dd"
42
+ image = Image.open(requests.get(image_url, stream=True).raw)
43
 
44
  inputs = processor(images=image, return_tensors="pt")
45
  outputs = model(**inputs)
46
  logits = outputs.logits
 
47
  predicted_class_idx = logits.argmax(-1).item()
48
  print("Predicted class:", model.config.id2label[predicted_class_idx])
49
  ```