--- license: apache-2.0 tags: - mergekit - merge datasets: - Intel/orca_dpo_pairs - NeuralNovel/Neural-Story-v1 base_model: - NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story - NeuralNovel/Gecko-7B-v0.1-DPO model-index: - name: Tiger-7b-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.03 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1 name: Open LLM Leaderboard --- ![tiger](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F645cfe4603fc86c46b3e46d1%2Fa9GqRTNoGZQsRVU-C6XRO.jpeg) # Tiger-7b-v0.1 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). [Join our Discord!](https://discord.gg/rJXGjmxqzS) Buy Me a Coffee at ko-fi.com ## Metrics ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F645cfe4603fc86c46b3e46d1%2FZ58bB5sYr3pyE2Ilbk7Dk.png) ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story](https://huggingface.co/NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story) * [NeuralNovel/Gecko-7B-v0.1-DPO](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1-DPO) # merge ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story layer_range: [0, 32] - model: NeuralNovel/Gecko-7B-v0.1-DPO layer_range: [0, 32] merge_method: slerp base_model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Tiger-7b-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |65.02| |AI2 Reasoning Challenge (25-Shot)|59.98| |HellaSwag (10-Shot) |83.21| |MMLU (5-Shot) |61.42| |TruthfulQA (0-shot) |61.03| |Winogrande (5-shot) |77.66| |GSM8k (5-shot) |46.78|