NeuralFalcon commited on
Commit
30ff368
·
verified ·
1 Parent(s): 8e2c630

Create AniTalker/extract_audio_features.py

Browse files
Files changed (1) hide show
  1. AniTalker/extract_audio_features.py +51 -0
AniTalker/extract_audio_features.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import numpy as np
4
+ import librosa
5
+ import torch
6
+ from tqdm import tqdm
7
+ from transformers import Wav2Vec2FeatureExtractor, HubertModel
8
+
9
+ def main(args):
10
+ if not torch.cuda.is_available() and args.computed_device == 'cuda':
11
+ print('CUDA is not available on this device. Switching to CPU.')
12
+ args.computed_device = 'cpu'
13
+
14
+ device = torch.device(args.computed_device)
15
+ model = HubertModel.from_pretrained(args.model_path).to(device)
16
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_path)
17
+ model.feature_extractor._freeze_parameters()
18
+ model.eval()
19
+
20
+ os.makedirs(args.audio_feature_saved_path, exist_ok=True)
21
+
22
+ for wavfile in tqdm(os.listdir(args.audio_dir_path)):
23
+ npy_save_path = os.path.join(args.audio_feature_saved_path, os.path.splitext(os.path.basename(wavfile))[0] + '.npy')
24
+
25
+ if os.path.exists(npy_save_path):
26
+ continue
27
+
28
+ audio, sr = librosa.load(os.path.join(args.audio_dir_path, wavfile), sr=16000)
29
+ input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
30
+ input_values = input_values.to(device)
31
+ ws_feats = []
32
+ with torch.no_grad():
33
+ outputs = model(input_values, output_hidden_states=True)
34
+ for i in range(len(outputs.hidden_states)):
35
+ ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
36
+ ws_feat_obj = np.array(ws_feats)
37
+ ws_feat_obj = np.squeeze(ws_feat_obj, 1)
38
+
39
+ if args.padding_to_align_audio:
40
+ ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge')
41
+ np.save(npy_save_path, ws_feat_obj)
42
+
43
+ if __name__ == "__main__":
44
+ parser = argparse.ArgumentParser(description="Extract audio features using a pre-trained HuBERT model.")
45
+ parser.add_argument("--model_path", type=str, default='weights/chinese-hubert-large', help="Path to the pre-trained model weights.")
46
+ parser.add_argument("--audio_dir_path", type=str, default='./audio_samples/raw_audios/', help="Directory containing raw audio files.")
47
+ parser.add_argument("--audio_feature_saved_path", type=str, default='./audio_samples/audio_features/', help="Directory where extracted audio features will be saved.")
48
+ parser.add_argument("--computed_device", type=str, default='cuda', choices=['cuda', 'cpu'], help="Device to compute the audio features on. Use 'cuda' for GPU or 'cpu' for CPU.")
49
+ parser.add_argument("--padding_to_align_audio", type=bool, default=True, help="Whether to pad the audio to align features.")
50
+ args = parser.parse_args()
51
+ main(args)