Update code.txt
Browse files
code.txt
CHANGED
@@ -1,212 +1,56 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
if
|
28 |
-
|
29 |
-
else:
|
30 |
-
|
31 |
-
|
32 |
-
cfg_scratches = get_cfg()
|
33 |
-
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
34 |
-
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
|
35 |
-
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
36 |
-
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
|
37 |
-
cfg_scratches.MODEL.DEVICE = device
|
38 |
-
|
39 |
-
predictor_scratches = DefaultPredictor(cfg_scratches)
|
40 |
-
|
41 |
-
metadata_scratch = MetadataCatalog.get("car_dataset_val")
|
42 |
-
metadata_scratch.thing_classes = ["scratch"]
|
43 |
-
|
44 |
-
cfg_damage = get_cfg()
|
45 |
-
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
46 |
-
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
|
47 |
-
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
48 |
-
cfg_damage.MODEL.WEIGHTS = damage_model_path
|
49 |
-
cfg_damage.MODEL.DEVICE = device
|
50 |
-
|
51 |
-
predictor_damage = DefaultPredictor(cfg_damage)
|
52 |
-
|
53 |
-
metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
|
54 |
-
metadata_damage.thing_classes = ["damage"]
|
55 |
-
|
56 |
-
cfg_parts = get_cfg()
|
57 |
-
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
58 |
-
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
|
59 |
-
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
|
60 |
-
cfg_parts.MODEL.WEIGHTS = parts_model_path
|
61 |
-
cfg_parts.MODEL.DEVICE = device
|
62 |
-
|
63 |
-
predictor_parts = DefaultPredictor(cfg_parts)
|
64 |
-
|
65 |
-
metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
|
66 |
-
metadata_parts.thing_classes = ['_background_',
|
67 |
-
'back_bumper',
|
68 |
-
'back_glass',
|
69 |
-
'back_left_door',
|
70 |
-
'back_left_light',
|
71 |
-
'back_right_door',
|
72 |
-
'back_right_light',
|
73 |
-
'front_bumper',
|
74 |
-
'front_glass',
|
75 |
-
'front_left_door',
|
76 |
-
'front_left_light',
|
77 |
-
'front_right_door',
|
78 |
-
'front_right_light',
|
79 |
-
'hood',
|
80 |
-
'left_mirror',
|
81 |
-
'right_mirror',
|
82 |
-
'tailgate',
|
83 |
-
'trunk',
|
84 |
-
'wheel']
|
85 |
-
|
86 |
-
def merge_segment(pred_segm):
|
87 |
-
merge_dict = {}
|
88 |
-
for i in range(len(pred_segm)):
|
89 |
-
merge_dict[i] = []
|
90 |
-
for j in range(i+1,len(pred_segm)):
|
91 |
-
if torch.sum(pred_segm[i]*pred_segm[j])>0:
|
92 |
-
merge_dict[i].append(j)
|
93 |
-
|
94 |
-
to_delete = []
|
95 |
-
for key in merge_dict:
|
96 |
-
for element in merge_dict[key]:
|
97 |
-
to_delete.append(element)
|
98 |
-
|
99 |
-
for element in to_delete:
|
100 |
-
merge_dict.pop(element,None)
|
101 |
-
|
102 |
-
empty_delete = []
|
103 |
-
for key in merge_dict:
|
104 |
-
if merge_dict[key] == []:
|
105 |
-
empty_delete.append(key)
|
106 |
-
|
107 |
-
for element in empty_delete:
|
108 |
-
merge_dict.pop(element,None)
|
109 |
|
110 |
-
|
111 |
-
for element in merge_dict[key]:
|
112 |
-
pred_segm[key]+=pred_segm[element]
|
113 |
-
|
114 |
-
except_elem = list(set(to_delete))
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
def inference(image):
|
124 |
-
img = np.array(image)
|
125 |
-
outputs_damage = predictor_damage(img)
|
126 |
-
outputs_parts = predictor_parts(img)
|
127 |
-
outputs_scratch = predictor_scratches(img)
|
128 |
-
out_dict = outputs_damage["instances"].to("cpu").get_fields()
|
129 |
-
merged_damage_masks = merge_segment(out_dict['pred_masks'])
|
130 |
-
scratch_data = outputs_scratch["instances"].get_fields()
|
131 |
-
scratch_masks = scratch_data['pred_masks']
|
132 |
-
damage_data = outputs_damage["instances"].get_fields()
|
133 |
-
damage_masks = damage_data['pred_masks']
|
134 |
-
parts_data = outputs_parts["instances"].get_fields()
|
135 |
-
parts_masks = parts_data['pred_masks']
|
136 |
-
parts_classes = parts_data['pred_classes']
|
137 |
-
new_inst = detectron2.structures.Instances((1024,1024))
|
138 |
-
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
|
139 |
-
|
140 |
-
parts_damage_dict = {}
|
141 |
-
parts_list_damages = []
|
142 |
-
for part in parts_classes:
|
143 |
-
parts_damage_dict[metadata_parts.thing_classes[part]] = []
|
144 |
-
for mask in scratch_masks:
|
145 |
-
for i in range(len(parts_masks)):
|
146 |
-
if torch.sum(parts_masks[i]*mask)>0:
|
147 |
-
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
|
148 |
-
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
149 |
-
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
150 |
-
for mask in merged_damage_masks:
|
151 |
-
for i in range(len(parts_masks)):
|
152 |
-
if torch.sum(parts_masks[i]*mask)>0:
|
153 |
-
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
|
154 |
-
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
155 |
-
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
156 |
|
157 |
-
v_d = Visualizer(img[:, :, ::-1],
|
158 |
-
metadata=metadata_damage,
|
159 |
-
scale=0.5,
|
160 |
-
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
161 |
-
)
|
162 |
-
#v_d = Visualizer(img,scale=1.2)
|
163 |
-
#print(outputs["instances"].to('cpu'))
|
164 |
-
out_d = v_d.draw_instance_predictions(new_inst)
|
165 |
-
img1 = out_d.get_image()[:, :, ::-1]
|
166 |
-
|
167 |
-
v_s = Visualizer(img[:, :, ::-1],
|
168 |
-
metadata=metadata_scratch,
|
169 |
-
scale=0.5,
|
170 |
-
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
171 |
-
)
|
172 |
-
#v_s = Visualizer(img,scale=1.2)
|
173 |
-
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
|
174 |
-
img2 = out_s.get_image()[:, :, ::-1]
|
175 |
-
|
176 |
-
v_p = Visualizer(img[:, :, ::-1],
|
177 |
-
metadata=metadata_parts,
|
178 |
-
scale=0.5,
|
179 |
-
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
180 |
-
)
|
181 |
-
#v_p = Visualizer(img,scale=1.2)
|
182 |
-
out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
|
183 |
-
img3 = out_p.get_image()[:, :, ::-1]
|
184 |
-
|
185 |
-
return img1, img2, img3, parts_list_damages
|
186 |
-
|
187 |
-
with gr.Blocks() as demo:
|
188 |
-
with gr.Row():
|
189 |
-
with gr.Column():
|
190 |
-
gr.Markdown("## Inputs")
|
191 |
-
image = gr.Image(type="pil",label="Input")
|
192 |
-
submit_button = gr.Button(value="Submit", label="Submit")
|
193 |
-
with gr.Column():
|
194 |
-
gr.Markdown("## Outputs")
|
195 |
-
with gr.Tab('Image of damages'):
|
196 |
-
im1 = gr.Image(type='numpy',label='Image of damages')
|
197 |
-
with gr.Tab('Image of scratches'):
|
198 |
-
im2 = gr.Image(type='numpy',label='Image of scratches')
|
199 |
-
with gr.Tab('Image of parts'):
|
200 |
-
im3 = gr.Image(type='numpy',label='Image of car parts')
|
201 |
-
with gr.Tab('Information about damaged parts'):
|
202 |
-
intersections = gr.Textbox(label='Information about type of damages on each part')
|
203 |
-
|
204 |
-
#actions
|
205 |
-
submit_button.click(
|
206 |
-
fn=inference,
|
207 |
-
inputs = [image],
|
208 |
-
outputs = [im1,im2,im3,intersections]
|
209 |
-
)
|
210 |
-
|
211 |
if __name__ == "__main__":
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
+
|
5 |
+
# Function to copy images to respective folders based on their labels
|
6 |
+
def copy_image(file_info):
|
7 |
+
src, dst_folder = file_info
|
8 |
+
dst = os.path.join(dst_folder, os.path.basename(src))
|
9 |
+
try:
|
10 |
+
shutil.copy2(src, dst) # Copy file to destination folder
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error copying {src}: {e}")
|
13 |
+
|
14 |
+
# Function to organize images into good and bad folders
|
15 |
+
def organize_images(image_folder, labels, destination_folder, num_threads=100):
|
16 |
+
# Create destination directories if they don't exist
|
17 |
+
good_folder = os.path.join(destination_folder, 'good')
|
18 |
+
bad_folder = os.path.join(destination_folder, 'bad')
|
19 |
+
os.makedirs(good_folder, exist_ok=True)
|
20 |
+
os.makedirs(bad_folder, exist_ok=True)
|
21 |
+
|
22 |
+
file_info_list = []
|
23 |
+
|
24 |
+
# Iterate over the labels and create file_info for each image
|
25 |
+
for image_name, label in labels.items():
|
26 |
+
src = os.path.join(image_folder, image_name)
|
27 |
+
if label == "good":
|
28 |
+
dst_folder = good_folder
|
29 |
+
else:
|
30 |
+
dst_folder = bad_folder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
file_info_list.append((src, dst_folder))
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Use ThreadPoolExecutor to copy files in parallel
|
35 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
36 |
+
futures = [executor.submit(copy_image, file_info) for file_info in file_info_list]
|
37 |
|
38 |
+
# Optional: Track the progress
|
39 |
+
for future in as_completed(futures):
|
40 |
+
future.result() # Wait for all threads to complete
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if __name__ == "__main__":
|
43 |
+
# Define your image folder and destination folder
|
44 |
+
image_folder = "/path/to/your/image_folder"
|
45 |
+
destination_folder = "/path/to/your/destination_folder"
|
46 |
+
|
47 |
+
# Your labels dictionary (image_name: label)
|
48 |
+
labels = {
|
49 |
+
"image1.jpg": "good",
|
50 |
+
"image2.jpg": "bad",
|
51 |
+
"image3.jpg": "good",
|
52 |
+
# Add the rest of your image labels here (1M entries)
|
53 |
+
}
|
54 |
+
|
55 |
+
# Organize images using 100 threads
|
56 |
+
organize_images(image_folder, labels, destination_folder, num_threads=100)
|