Upload 4 files
Browse files- Custom_Object_Detection.ipynb +0 -0
- export_tflite_graph_tf2.py +152 -0
- exporter_main_v2.py +159 -0
- model_main_tf2.py +113 -0
Custom_Object_Detection.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
export_tflite_graph_tf2.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python2, python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
r"""Exports TF2 detection SavedModel for conversion to TensorFlow Lite.
|
17 |
+
Link to the TF2 Detection Zoo:
|
18 |
+
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
|
19 |
+
The output folder will contain an intermediate SavedModel that can be used with
|
20 |
+
the TfLite converter.
|
21 |
+
NOTE: This only supports SSD meta-architectures for now.
|
22 |
+
One input:
|
23 |
+
image: a float32 tensor of shape[1, height, width, 3] containing the
|
24 |
+
*normalized* input image.
|
25 |
+
NOTE: See the `preprocess` function defined in the feature extractor class
|
26 |
+
in the object_detection/models directory.
|
27 |
+
Four Outputs:
|
28 |
+
detection_boxes: a float32 tensor of shape [1, num_boxes, 4] with box
|
29 |
+
locations
|
30 |
+
detection_classes: a float32 tensor of shape [1, num_boxes]
|
31 |
+
with class indices
|
32 |
+
detection_scores: a float32 tensor of shape [1, num_boxes]
|
33 |
+
with class scores
|
34 |
+
num_boxes: a float32 tensor of size 1 containing the number of detected boxes
|
35 |
+
Example Usage:
|
36 |
+
--------------
|
37 |
+
python object_detection/export_tflite_graph_tf2.py \
|
38 |
+
--pipeline_config_path path/to/ssd_model/pipeline.config \
|
39 |
+
--trained_checkpoint_dir path/to/ssd_model/checkpoint \
|
40 |
+
--output_directory path/to/exported_model_directory
|
41 |
+
The expected output SavedModel would be in the directory
|
42 |
+
path/to/exported_model_directory (which is created if it does not exist).
|
43 |
+
Config overrides (see the `config_override` flag) are text protobufs
|
44 |
+
(also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override
|
45 |
+
certain fields in the provided pipeline_config_path. These are useful for
|
46 |
+
making small changes to the inference graph that differ from the training or
|
47 |
+
eval config.
|
48 |
+
Example Usage 1 (in which we change the NMS iou_threshold to be 0.5 and
|
49 |
+
NMS score_threshold to be 0.0):
|
50 |
+
python object_detection/export_tflite_model_tf2.py \
|
51 |
+
--pipeline_config_path path/to/ssd_model/pipeline.config \
|
52 |
+
--trained_checkpoint_dir path/to/ssd_model/checkpoint \
|
53 |
+
--output_directory path/to/exported_model_directory
|
54 |
+
--config_override " \
|
55 |
+
model{ \
|
56 |
+
ssd{ \
|
57 |
+
post_processing { \
|
58 |
+
batch_non_max_suppression { \
|
59 |
+
score_threshold: 0.0 \
|
60 |
+
iou_threshold: 0.5 \
|
61 |
+
} \
|
62 |
+
} \
|
63 |
+
} \
|
64 |
+
} \
|
65 |
+
"
|
66 |
+
Example Usage 2 (export CenterNet model for keypoint estimation task with fixed
|
67 |
+
shape resizer and customized input resolution):
|
68 |
+
python object_detection/export_tflite_model_tf2.py \
|
69 |
+
--pipeline_config_path path/to/ssd_model/pipeline.config \
|
70 |
+
--trained_checkpoint_dir path/to/ssd_model/checkpoint \
|
71 |
+
--output_directory path/to/exported_model_directory \
|
72 |
+
--keypoint_label_map_path path/to/label_map.txt \
|
73 |
+
--max_detections 10 \
|
74 |
+
--centernet_include_keypoints true \
|
75 |
+
--config_override " \
|
76 |
+
model{ \
|
77 |
+
center_net { \
|
78 |
+
image_resizer { \
|
79 |
+
fixed_shape_resizer { \
|
80 |
+
height: 320 \
|
81 |
+
width: 320 \
|
82 |
+
} \
|
83 |
+
} \
|
84 |
+
} \
|
85 |
+
}" \
|
86 |
+
"""
|
87 |
+
from absl import app
|
88 |
+
from absl import flags
|
89 |
+
|
90 |
+
import tensorflow.compat.v2 as tf
|
91 |
+
from google.protobuf import text_format
|
92 |
+
from object_detection import export_tflite_graph_lib_tf2
|
93 |
+
from object_detection.protos import pipeline_pb2
|
94 |
+
|
95 |
+
tf.enable_v2_behavior()
|
96 |
+
|
97 |
+
FLAGS = flags.FLAGS
|
98 |
+
|
99 |
+
flags.DEFINE_string(
|
100 |
+
'pipeline_config_path', None,
|
101 |
+
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
|
102 |
+
'file.')
|
103 |
+
flags.DEFINE_string('trained_checkpoint_dir', None,
|
104 |
+
'Path to trained checkpoint directory')
|
105 |
+
flags.DEFINE_string('output_directory', None, 'Path to write outputs.')
|
106 |
+
flags.DEFINE_string(
|
107 |
+
'config_override', '', 'pipeline_pb2.TrainEvalPipelineConfig '
|
108 |
+
'text proto to override pipeline_config_path.')
|
109 |
+
flags.DEFINE_integer('max_detections', 10,
|
110 |
+
'Maximum number of detections (boxes) to return.')
|
111 |
+
# SSD-specific flags
|
112 |
+
flags.DEFINE_bool(
|
113 |
+
'ssd_use_regular_nms', False,
|
114 |
+
'Flag to set postprocessing op to use Regular NMS instead of Fast NMS '
|
115 |
+
'(Default false).')
|
116 |
+
# CenterNet-specific flags
|
117 |
+
flags.DEFINE_bool(
|
118 |
+
'centernet_include_keypoints', False,
|
119 |
+
'Whether to export the predicted keypoint tensors. Only CenterNet model'
|
120 |
+
' supports this flag.'
|
121 |
+
)
|
122 |
+
flags.DEFINE_string(
|
123 |
+
'keypoint_label_map_path', None,
|
124 |
+
'Path of the label map used by CenterNet keypoint estimation task. If'
|
125 |
+
' provided, the label map path in the pipeline config will be replaced by'
|
126 |
+
' this one. Note that it is only used when exporting CenterNet model for'
|
127 |
+
' keypoint estimation task.'
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
def main(argv):
|
132 |
+
del argv # Unused.
|
133 |
+
flags.mark_flag_as_required('pipeline_config_path')
|
134 |
+
flags.mark_flag_as_required('trained_checkpoint_dir')
|
135 |
+
flags.mark_flag_as_required('output_directory')
|
136 |
+
|
137 |
+
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
|
138 |
+
|
139 |
+
with tf.io.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
|
140 |
+
text_format.Parse(f.read(), pipeline_config)
|
141 |
+
override_config = pipeline_pb2.TrainEvalPipelineConfig()
|
142 |
+
text_format.Parse(FLAGS.config_override, override_config)
|
143 |
+
pipeline_config.MergeFrom(override_config)
|
144 |
+
|
145 |
+
export_tflite_graph_lib_tf2.export_tflite_model(
|
146 |
+
pipeline_config, FLAGS.trained_checkpoint_dir, FLAGS.output_directory,
|
147 |
+
FLAGS.max_detections, FLAGS.ssd_use_regular_nms,
|
148 |
+
FLAGS.centernet_include_keypoints, FLAGS.keypoint_label_map_path)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == '__main__':
|
152 |
+
app.run(main)
|
exporter_main_v2.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python2, python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
|
17 |
+
r"""Tool to export an object detection model for inference.
|
18 |
+
|
19 |
+
Prepares an object detection tensorflow graph for inference using model
|
20 |
+
configuration and a trained checkpoint. Outputs associated checkpoint files,
|
21 |
+
a SavedModel, and a copy of the model config.
|
22 |
+
|
23 |
+
The inference graph contains one of three input nodes depending on the user
|
24 |
+
specified option.
|
25 |
+
* `image_tensor`: Accepts a uint8 4-D tensor of shape [1, None, None, 3]
|
26 |
+
* `float_image_tensor`: Accepts a float32 4-D tensor of shape
|
27 |
+
[1, None, None, 3]
|
28 |
+
* `encoded_image_string_tensor`: Accepts a 1-D string tensor of shape [None]
|
29 |
+
containing encoded PNG or JPEG images. Image resolutions are expected to be
|
30 |
+
the same if more than 1 image is provided.
|
31 |
+
* `tf_example`: Accepts a 1-D string tensor of shape [None] containing
|
32 |
+
serialized TFExample protos. Image resolutions are expected to be the same
|
33 |
+
if more than 1 image is provided.
|
34 |
+
|
35 |
+
and the following output nodes returned by the model.postprocess(..):
|
36 |
+
* `num_detections`: Outputs float32 tensors of the form [batch]
|
37 |
+
that specifies the number of valid boxes per image in the batch.
|
38 |
+
* `detection_boxes`: Outputs float32 tensors of the form
|
39 |
+
[batch, num_boxes, 4] containing detected boxes.
|
40 |
+
* `detection_scores`: Outputs float32 tensors of the form
|
41 |
+
[batch, num_boxes] containing class scores for the detections.
|
42 |
+
* `detection_classes`: Outputs float32 tensors of the form
|
43 |
+
[batch, num_boxes] containing classes for the detections.
|
44 |
+
|
45 |
+
|
46 |
+
Example Usage:
|
47 |
+
--------------
|
48 |
+
python exporter_main_v2.py \
|
49 |
+
--input_type image_tensor \
|
50 |
+
--pipeline_config_path path/to/ssd_inception_v2.config \
|
51 |
+
--trained_checkpoint_dir path/to/checkpoint \
|
52 |
+
--output_directory path/to/exported_model_directory
|
53 |
+
--use_side_inputs True/False \
|
54 |
+
--side_input_shapes dim_0,dim_1,...dim_a/.../dim_0,dim_1,...,dim_z \
|
55 |
+
--side_input_names name_a,name_b,...,name_c \
|
56 |
+
--side_input_types type_1,type_2
|
57 |
+
|
58 |
+
The expected output would be in the directory
|
59 |
+
path/to/exported_model_directory (which is created if it does not exist)
|
60 |
+
holding two subdirectories (corresponding to checkpoint and SavedModel,
|
61 |
+
respectively) and a copy of the pipeline config.
|
62 |
+
|
63 |
+
Config overrides (see the `config_override` flag) are text protobufs
|
64 |
+
(also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override
|
65 |
+
certain fields in the provided pipeline_config_path. These are useful for
|
66 |
+
making small changes to the inference graph that differ from the training or
|
67 |
+
eval config.
|
68 |
+
|
69 |
+
Example Usage (in which we change the second stage post-processing score
|
70 |
+
threshold to be 0.5):
|
71 |
+
|
72 |
+
python exporter_main_v2.py \
|
73 |
+
--input_type image_tensor \
|
74 |
+
--pipeline_config_path path/to/ssd_inception_v2.config \
|
75 |
+
--trained_checkpoint_dir path/to/checkpoint \
|
76 |
+
--output_directory path/to/exported_model_directory \
|
77 |
+
--config_override " \
|
78 |
+
model{ \
|
79 |
+
faster_rcnn { \
|
80 |
+
second_stage_post_processing { \
|
81 |
+
batch_non_max_suppression { \
|
82 |
+
score_threshold: 0.5 \
|
83 |
+
} \
|
84 |
+
} \
|
85 |
+
} \
|
86 |
+
}"
|
87 |
+
|
88 |
+
If side inputs are desired, the following arguments could be appended
|
89 |
+
(the example below is for Context R-CNN).
|
90 |
+
--use_side_inputs True \
|
91 |
+
--side_input_shapes 1,2000,2057/1 \
|
92 |
+
--side_input_names context_features,valid_context_size \
|
93 |
+
--side_input_types tf.float32,tf.int32
|
94 |
+
"""
|
95 |
+
from absl import app
|
96 |
+
from absl import flags
|
97 |
+
|
98 |
+
import tensorflow.compat.v2 as tf
|
99 |
+
from google.protobuf import text_format
|
100 |
+
from object_detection import exporter_lib_v2
|
101 |
+
from object_detection.protos import pipeline_pb2
|
102 |
+
|
103 |
+
tf.enable_v2_behavior()
|
104 |
+
|
105 |
+
|
106 |
+
FLAGS = flags.FLAGS
|
107 |
+
|
108 |
+
flags.DEFINE_string('input_type', 'image_tensor', 'Type of input node. Can be '
|
109 |
+
'one of [`image_tensor`, `encoded_image_string_tensor`, '
|
110 |
+
'`tf_example`, `float_image_tensor`]')
|
111 |
+
flags.DEFINE_string('pipeline_config_path', None,
|
112 |
+
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
|
113 |
+
'file.')
|
114 |
+
flags.DEFINE_string('trained_checkpoint_dir', None,
|
115 |
+
'Path to trained checkpoint directory')
|
116 |
+
flags.DEFINE_string('output_directory', None, 'Path to write outputs.')
|
117 |
+
flags.DEFINE_string('config_override', '',
|
118 |
+
'pipeline_pb2.TrainEvalPipelineConfig '
|
119 |
+
'text proto to override pipeline_config_path.')
|
120 |
+
flags.DEFINE_boolean('use_side_inputs', False,
|
121 |
+
'If True, uses side inputs as well as image inputs.')
|
122 |
+
flags.DEFINE_string('side_input_shapes', '',
|
123 |
+
'If use_side_inputs is True, this explicitly sets '
|
124 |
+
'the shape of the side input tensors to a fixed size. The '
|
125 |
+
'dimensions are to be provided as a comma-separated list '
|
126 |
+
'of integers. A value of -1 can be used for unknown '
|
127 |
+
'dimensions. A `/` denotes a break, starting the shape of '
|
128 |
+
'the next side input tensor. This flag is required if '
|
129 |
+
'using side inputs.')
|
130 |
+
flags.DEFINE_string('side_input_types', '',
|
131 |
+
'If use_side_inputs is True, this explicitly sets '
|
132 |
+
'the type of the side input tensors. The '
|
133 |
+
'dimensions are to be provided as a comma-separated list '
|
134 |
+
'of types, each of `string`, `integer`, or `float`. '
|
135 |
+
'This flag is required if using side inputs.')
|
136 |
+
flags.DEFINE_string('side_input_names', '',
|
137 |
+
'If use_side_inputs is True, this explicitly sets '
|
138 |
+
'the names of the side input tensors required by the model '
|
139 |
+
'assuming the names will be a comma-separated list of '
|
140 |
+
'strings. This flag is required if using side inputs.')
|
141 |
+
|
142 |
+
flags.mark_flag_as_required('pipeline_config_path')
|
143 |
+
flags.mark_flag_as_required('trained_checkpoint_dir')
|
144 |
+
flags.mark_flag_as_required('output_directory')
|
145 |
+
|
146 |
+
|
147 |
+
def main(_):
|
148 |
+
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
|
149 |
+
with tf.io.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
|
150 |
+
text_format.Merge(f.read(), pipeline_config)
|
151 |
+
text_format.Merge(FLAGS.config_override, pipeline_config)
|
152 |
+
exporter_lib_v2.export_inference_graph(
|
153 |
+
FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_dir,
|
154 |
+
FLAGS.output_directory, FLAGS.use_side_inputs, FLAGS.side_input_shapes,
|
155 |
+
FLAGS.side_input_types, FLAGS.side_input_names)
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == '__main__':
|
159 |
+
app.run(main)
|
model_main_tf2.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
|
17 |
+
r"""Creates and runs TF2 object detection models.
|
18 |
+
|
19 |
+
For local training/evaluation run:
|
20 |
+
PIPELINE_CONFIG_PATH=path/to/pipeline.config
|
21 |
+
MODEL_DIR=/tmp/model_outputs
|
22 |
+
NUM_TRAIN_STEPS=10000
|
23 |
+
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
|
24 |
+
python model_main_tf2.py -- \
|
25 |
+
--model_dir=$MODEL_DIR --num_train_steps=$NUM_TRAIN_STEPS \
|
26 |
+
--sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \
|
27 |
+
--pipeline_config_path=$PIPELINE_CONFIG_PATH \
|
28 |
+
--alsologtostderr
|
29 |
+
"""
|
30 |
+
from absl import flags
|
31 |
+
import tensorflow.compat.v2 as tf
|
32 |
+
from object_detection import model_lib_v2
|
33 |
+
|
34 |
+
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
|
35 |
+
'file.')
|
36 |
+
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
|
37 |
+
flags.DEFINE_bool('eval_on_train_data', False, 'Enable evaluating on train '
|
38 |
+
'data (only supported in distributed training).')
|
39 |
+
flags.DEFINE_integer('sample_1_of_n_eval_examples', None, 'Will sample one of '
|
40 |
+
'every n eval input examples, where n is provided.')
|
41 |
+
flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample '
|
42 |
+
'one of every n train input examples for evaluation, '
|
43 |
+
'where n is provided. This is only used if '
|
44 |
+
'`eval_training_data` is True.')
|
45 |
+
flags.DEFINE_string(
|
46 |
+
'model_dir', None, 'Path to output model directory '
|
47 |
+
'where event and checkpoint files will be written.')
|
48 |
+
flags.DEFINE_string(
|
49 |
+
'checkpoint_dir', None, 'Path to directory holding a checkpoint. If '
|
50 |
+
'`checkpoint_dir` is provided, this binary operates in eval-only mode, '
|
51 |
+
'writing resulting metrics to `model_dir`.')
|
52 |
+
|
53 |
+
flags.DEFINE_integer('eval_timeout', 3600, 'Number of seconds to wait for an'
|
54 |
+
'evaluation checkpoint before exiting.')
|
55 |
+
|
56 |
+
flags.DEFINE_bool('use_tpu', False, 'Whether the job is executing on a TPU.')
|
57 |
+
flags.DEFINE_string(
|
58 |
+
'tpu_name',
|
59 |
+
default=None,
|
60 |
+
help='Name of the Cloud TPU for Cluster Resolvers.')
|
61 |
+
flags.DEFINE_integer(
|
62 |
+
'num_workers', 1, 'When num_workers > 1, training uses '
|
63 |
+
'MultiWorkerMirroredStrategy. When num_workers = 1 it uses '
|
64 |
+
'MirroredStrategy.')
|
65 |
+
flags.DEFINE_integer(
|
66 |
+
'checkpoint_every_n', 1000, 'Integer defining how often we checkpoint.')
|
67 |
+
flags.DEFINE_boolean('record_summaries', True,
|
68 |
+
('Whether or not to record summaries during'
|
69 |
+
' training.'))
|
70 |
+
|
71 |
+
FLAGS = flags.FLAGS
|
72 |
+
|
73 |
+
|
74 |
+
def main(unused_argv):
|
75 |
+
flags.mark_flag_as_required('model_dir')
|
76 |
+
flags.mark_flag_as_required('pipeline_config_path')
|
77 |
+
tf.config.set_soft_device_placement(True)
|
78 |
+
|
79 |
+
if FLAGS.checkpoint_dir:
|
80 |
+
model_lib_v2.eval_continuously(
|
81 |
+
pipeline_config_path=FLAGS.pipeline_config_path,
|
82 |
+
model_dir=FLAGS.model_dir,
|
83 |
+
train_steps=FLAGS.num_train_steps,
|
84 |
+
sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples,
|
85 |
+
sample_1_of_n_eval_on_train_examples=(
|
86 |
+
FLAGS.sample_1_of_n_eval_on_train_examples),
|
87 |
+
checkpoint_dir=FLAGS.checkpoint_dir,
|
88 |
+
wait_interval=300, timeout=FLAGS.eval_timeout)
|
89 |
+
else:
|
90 |
+
if FLAGS.use_tpu:
|
91 |
+
# TPU is automatically inferred if tpu_name is None and
|
92 |
+
# we are running under cloud ai-platform.
|
93 |
+
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
|
94 |
+
FLAGS.tpu_name)
|
95 |
+
tf.config.experimental_connect_to_cluster(resolver)
|
96 |
+
tf.tpu.experimental.initialize_tpu_system(resolver)
|
97 |
+
strategy = tf.distribute.experimental.TPUStrategy(resolver)
|
98 |
+
elif FLAGS.num_workers > 1:
|
99 |
+
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
|
100 |
+
else:
|
101 |
+
strategy = tf.compat.v2.distribute.MirroredStrategy()
|
102 |
+
|
103 |
+
with strategy.scope():
|
104 |
+
model_lib_v2.train_loop(
|
105 |
+
pipeline_config_path=FLAGS.pipeline_config_path,
|
106 |
+
model_dir=FLAGS.model_dir,
|
107 |
+
train_steps=FLAGS.num_train_steps,
|
108 |
+
use_tpu=FLAGS.use_tpu,
|
109 |
+
checkpoint_every_n=FLAGS.checkpoint_every_n,
|
110 |
+
record_summaries=FLAGS.record_summaries)
|
111 |
+
|
112 |
+
if __name__ == '__main__':
|
113 |
+
tf.compat.v1.app.run()
|