Update tempo.txt
Browse files
tempo.txt
CHANGED
@@ -1,42 +1,35 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
|
4 |
-
def detect_half_circles(binary_image, threshold=
|
|
|
|
|
|
|
5 |
# Find contours in the binary image
|
6 |
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
7 |
|
8 |
detected_shapes = []
|
9 |
-
output_image = cv2.cvtColor(binary_image, cv2.COLOR_GRAY2BGR)
|
10 |
|
11 |
for contour in contours:
|
12 |
-
#
|
13 |
-
|
14 |
-
approx = cv2.approxPolyDP(contour, epsilon, True)
|
15 |
|
16 |
-
#
|
17 |
-
if len(
|
18 |
-
# Fit an ellipse to the contour
|
19 |
ellipse = cv2.fitEllipse(contour)
|
20 |
(x, y), (MA, ma), angle = ellipse
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
# Check if the shape is approximately a half-circle
|
26 |
-
if 0.4 < aspect_ratio < 0.6: # Adjust these values as needed
|
27 |
-
# Calculate the match score (this is a simplistic approach, you might need a more robust method)
|
28 |
-
match_score = (1 - abs(aspect_ratio - 0.5) / 0.5) * 100
|
29 |
|
30 |
-
if
|
31 |
-
|
32 |
-
|
33 |
-
# Draw a bounding rectangle around the detected half-circle
|
34 |
-
x, y, w, h = cv2.boundingRect(contour)
|
35 |
-
cv2.rectangle(output_image, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
36 |
|
37 |
# Draw the contour with a different color
|
38 |
-
cv2.drawContours(output_image, [
|
39 |
-
|
40 |
return output_image, detected_shapes
|
41 |
|
42 |
# Example usage
|
@@ -46,7 +39,7 @@ binary_image = cv2.imread('path_to_your_image.png', cv2.IMREAD_GRAYSCALE)
|
|
46 |
# Threshold the image to make sure it's binary
|
47 |
_, binary_image = cv2.threshold(binary_image, 127, 255, cv2.THRESH_BINARY)
|
48 |
|
49 |
-
# Detect half-circles and draw
|
50 |
output_image, detected_shapes = detect_half_circles(binary_image)
|
51 |
|
52 |
# Show the result
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
|
4 |
+
def detect_half_circles(binary_image, threshold=0.8):
|
5 |
+
# Convert binary image to BGR for drawing colored shapes
|
6 |
+
output_image = cv2.cvtColor(binary_image, cv2.COLOR_GRAY2BGR)
|
7 |
+
|
8 |
# Find contours in the binary image
|
9 |
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
10 |
|
11 |
detected_shapes = []
|
|
|
12 |
|
13 |
for contour in contours:
|
14 |
+
# Calculate the perimeter of the contour
|
15 |
+
perimeter = cv2.arcLength(contour, True)
|
|
|
16 |
|
17 |
+
# Fit an ellipse to the contour
|
18 |
+
if len(contour) >= 5: # Need at least 5 points to fit an ellipse
|
|
|
19 |
ellipse = cv2.fitEllipse(contour)
|
20 |
(x, y), (MA, ma), angle = ellipse
|
21 |
|
22 |
+
# Check if the major axis is approximately twice the minor axis (indicating a half-circle)
|
23 |
+
if 0.8 < (MA / ma) < 1.2: # This range can be adjusted based on specific requirements
|
24 |
+
aspect_ratio = float(MA) / ma
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Check if the aspect ratio is approximately 2:1 (indicating a half-circle shape)
|
27 |
+
if 0.4 < aspect_ratio < 0.6: # This range can also be adjusted
|
28 |
+
detected_shapes.append(contour)
|
|
|
|
|
|
|
29 |
|
30 |
# Draw the contour with a different color
|
31 |
+
cv2.drawContours(output_image, [contour], -1, (0, 0, 255), 2)
|
32 |
+
|
33 |
return output_image, detected_shapes
|
34 |
|
35 |
# Example usage
|
|
|
39 |
# Threshold the image to make sure it's binary
|
40 |
_, binary_image = cv2.threshold(binary_image, 127, 255, cv2.THRESH_BINARY)
|
41 |
|
42 |
+
# Detect half-circles and draw contours
|
43 |
output_image, detected_shapes = detect_half_circles(binary_image)
|
44 |
|
45 |
# Show the result
|