|
try: |
|
import detectron2 |
|
except: |
|
import os |
|
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') |
|
|
|
from matplotlib.pyplot import axis |
|
import gradio as gr |
|
import requests |
|
import numpy as np |
|
from torch import nn |
|
import requests |
|
|
|
import torch |
|
import detectron2 |
|
from detectron2 import model_zoo |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.utils.visualizer import ColorMode |
|
|
|
damage_model_path = 'damage/model_final.pth' |
|
scratch_model_path = 'scratch/model_final.pth' |
|
parts_model_path = 'parts/model_final.pth' |
|
|
|
if torch.cuda.is_available(): |
|
device = 'cuda' |
|
else: |
|
device = 'cpu' |
|
|
|
cfg_scratches = get_cfg() |
|
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) |
|
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 |
|
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1 |
|
cfg_scratches.MODEL.WEIGHTS = scratch_model_path |
|
cfg_scratches.MODEL.DEVICE = device |
|
|
|
predictor_scratches = DefaultPredictor(cfg_scratches) |
|
|
|
metadata_scratch = MetadataCatalog.get("car_dataset_val") |
|
metadata_scratch.thing_classes = ["scratch"] |
|
|
|
cfg_damage = get_cfg() |
|
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) |
|
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 |
|
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1 |
|
cfg_damage.MODEL.WEIGHTS = damage_model_path |
|
cfg_damage.MODEL.DEVICE = device |
|
|
|
predictor_damage = DefaultPredictor(cfg_damage) |
|
|
|
metadata_damage = MetadataCatalog.get("car_damage_dataset_val") |
|
metadata_damage.thing_classes = ["damage"] |
|
|
|
cfg_parts = get_cfg() |
|
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) |
|
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75 |
|
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19 |
|
cfg_parts.MODEL.WEIGHTS = parts_model_path |
|
cfg_parts.MODEL.DEVICE = device |
|
|
|
predictor_parts = DefaultPredictor(cfg_parts) |
|
|
|
metadata_parts = MetadataCatalog.get("car_parts_dataset_val") |
|
metadata_parts.thing_classes = ['_background_', |
|
'back_bumper', |
|
'back_glass', |
|
'back_left_door', |
|
'back_left_light', |
|
'back_right_door', |
|
'back_right_light', |
|
'front_bumper', |
|
'front_glass', |
|
'front_left_door', |
|
'front_left_light', |
|
'front_right_door', |
|
'front_right_light', |
|
'hood', |
|
'left_mirror', |
|
'right_mirror', |
|
'tailgate', |
|
'trunk', |
|
'wheel'] |
|
|
|
def merge_segment(pred_segm): |
|
merge_dict = {} |
|
for i in range(len(pred_segm)): |
|
merge_dict[i] = [] |
|
for j in range(i+1,len(pred_segm)): |
|
if torch.sum(pred_segm[i]*pred_segm[j])>0: |
|
merge_dict[i].append(j) |
|
|
|
to_delete = [] |
|
for key in merge_dict: |
|
for element in merge_dict[key]: |
|
to_delete.append(element) |
|
|
|
for element in to_delete: |
|
merge_dict.pop(element,None) |
|
|
|
empty_delete = [] |
|
for key in merge_dict: |
|
if merge_dict[key] == []: |
|
empty_delete.append(key) |
|
|
|
for element in empty_delete: |
|
merge_dict.pop(element,None) |
|
|
|
for key in merge_dict: |
|
for element in merge_dict[key]: |
|
pred_segm[key]+=pred_segm[element] |
|
|
|
except_elem = list(set(to_delete)) |
|
|
|
new_indexes = list(range(len(pred_segm))) |
|
for elem in except_elem: |
|
new_indexes.remove(elem) |
|
|
|
return pred_segm[new_indexes] |
|
|
|
|
|
def inference(image): |
|
img = np.array(image) |
|
outputs_damage = predictor_damage(img) |
|
outputs_parts = predictor_parts(img) |
|
outputs_scratch = predictor_scratches(img) |
|
out_dict = outputs_damage["instances"].to("cpu").get_fields() |
|
merged_damage_masks = merge_segment(out_dict['pred_masks']) |
|
scratch_data = outputs_scratch["instances"].get_fields() |
|
scratch_masks = scratch_data['pred_masks'] |
|
damage_data = outputs_damage["instances"].get_fields() |
|
damage_masks = damage_data['pred_masks'] |
|
parts_data = outputs_parts["instances"].get_fields() |
|
parts_masks = parts_data['pred_masks'] |
|
parts_classes = parts_data['pred_classes'] |
|
new_inst = detectron2.structures.Instances((1024,1024)) |
|
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks'])) |
|
|
|
parts_damage_dict = {} |
|
parts_list_damages = [] |
|
for part in parts_classes: |
|
parts_damage_dict[metadata_parts.thing_classes[part]] = [] |
|
for mask in scratch_masks: |
|
for i in range(len(parts_masks)): |
|
if torch.sum(parts_masks[i]*mask)>0: |
|
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch') |
|
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') |
|
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') |
|
for mask in merged_damage_masks: |
|
for i in range(len(parts_masks)): |
|
if torch.sum(parts_masks[i]*mask)>0: |
|
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage') |
|
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') |
|
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') |
|
|
|
v_d = Visualizer(img[:, :, ::-1], |
|
metadata=metadata_damage, |
|
scale=0.5, |
|
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models |
|
) |
|
#v_d = Visualizer(img,scale=1.2) |
|
#print(outputs["instances"].to('cpu')) |
|
out_d = v_d.draw_instance_predictions(new_inst) |
|
img1 = out_d.get_image()[:, :, ::-1] |
|
|
|
v_s = Visualizer(img[:, :, ::-1], |
|
metadata=metadata_scratch, |
|
scale=0.5, |
|
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models |
|
) |
|
#v_s = Visualizer(img,scale=1.2) |
|
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"]) |
|
img2 = out_s.get_image()[:, :, ::-1] |
|
|
|
v_p = Visualizer(img[:, :, ::-1], |
|
metadata=metadata_parts, |
|
scale=0.5, |
|
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models |
|
) |
|
#v_p = Visualizer(img,scale=1.2) |
|
out_p = v_p.draw_instance_predictions(outputs_parts["instances"]) |
|
img3 = out_p.get_image()[:, :, ::-1] |
|
|
|
return img1, img2, img3, parts_list_damages |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("## Inputs") |
|
image = gr.Image(type="pil",label="Input") |
|
submit_button = gr.Button(value="Submit", label="Submit") |
|
with gr.Column(): |
|
gr.Markdown("## Outputs") |
|
with gr.Tab('Image of damages'): |
|
im1 = gr.Image(type='numpy',label='Image of damages') |
|
with gr.Tab('Image of scratches'): |
|
im2 = gr.Image(type='numpy',label='Image of scratches') |
|
with gr.Tab('Image of parts'): |
|
im3 = gr.Image(type='numpy',label='Image of car parts') |
|
with gr.Tab('Information about damaged parts'): |
|
intersections = gr.Textbox(label='Information about type of damages on each part') |
|
|
|
#actions |
|
submit_button.click( |
|
fn=inference, |
|
inputs = [image], |
|
outputs = [im1,im2,im3,intersections] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |