File size: 3,203 Bytes
04e6b4c 6d38c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import tensorflow as tf
# Load the TFLite model
tflite_model_path = 'model.tflite'
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()
# Export the TFLite model back to a TensorFlow SavedModel
saved_model_dir = 'saved_model'
# Convert the TFLite model back to a TensorFlow model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
tf.saved_model.save(interpreter, saved_model_dir)
pip install tf2onnx
pip install onnx_runtime
python -m tf2onnx.convert --saved-model saved_model --output model.onnx --opset 11
import onnxruntime as ort
import numpy as np
from PIL import Image
# Load ONNX model
onnx_model_path = 'model.onnx'
session = ort.InferenceSession(onnx_model_path)
# Load image and preprocess (resize, normalize)
image_path = 'image.jpg'
image = Image.open(image_path).resize((320, 320)) # Assuming 320x320 model input size
image_data = np.array(image).astype('float32')
image_data = np.expand_dims(image_data, axis=0) # Add batch dimension
# Run inference
input_name = session.get_inputs()[0].name
output = session.run(None, {input_name: image_data})
# Output contains predictions, including bounding boxes and class labels
print(output)
import onnxruntime as ort
import numpy as np
from PIL import Image
# Load ONNX model
onnx_model_path = 'model.onnx'
session = ort.InferenceSession(onnx_model_path)
# Function to preprocess a single image (resize and normalize)
def preprocess_image(image_path, input_size=(320, 320)):
image = Image.open(image_path).resize(input_size) # Resize to match model input size
image_data = np.array(image).astype('float32') # Convert to float32
image_data = np.expand_dims(image_data, axis=0) # Add batch dimension (1, height, width, channels)
return image_data
# Prepare a batch of images
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg'] # List of image file paths
batch_size = len(image_paths)
# Preprocess each image and stack them into a batch
batch_images = np.vstack([preprocess_image(image_path) for image_path in image_paths])
# Check input name from the ONNX model
input_name = session.get_inputs()[0].name
# Run batch inference
outputs = session.run(None, {input_name: batch_images})
# Postprocessing: Extract scores, bounding boxes, and labels for each image in the batch
scores_batch, bboxes_batch, labels_batch = outputs[0], outputs[1], outputs[2]
# Iterate over the batch of results and filter based on score threshold
score_threshold = 0.5
for i in range(batch_size):
scores = scores_batch[i] # Scores for i-th image
bboxes = bboxes_batch[i] # Bounding boxes for i-th image
labels = labels_batch[i] # Labels for i-th image
# Filter indices where scores are greater than the threshold
valid_indices = np.where(scores > score_threshold)
# Filter the outputs based on valid indices
filtered_scores = scores[valid_indices]
filtered_bboxes = bboxes[valid_indices]
filtered_labels = labels[valid_indices]
print(f"Image {i+1}:")
print("Filtered Scores:", filtered_scores)
print("Filtered Bounding Boxes:", filtered_bboxes)
print("Filtered Labels:", filtered_labels)
print('---')
|