File size: 2,240 Bytes
3641389
2784ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3641389
f16eb88
2784ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f16eb88
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- no
- robust-speech-event
- model_for_talk
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M-LM - Norwegian
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: NPSC
      type: NbAiLab/NPSC
      args: sv-SE
    metrics:
       - name: Eval WER
         type: wer
         value: 21.10
       - name: Eval CER
         type: cer
         value: 0.06

---


# XLS-R-300M-LM - Norwegian

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.

### Scores without Language Model

Without using a language model, it achieves the following scores on the NPSC Eval set

It achieves the following results on the evaluation set without a language model:

- Loss: 0.1992

- WER: 0.2110

- CER: 0.0622



### Scores with Language Model

A 5-gram KenLM was added to boost the models performance. After 



## Model description

This current version is based on checkpoint 8500 of [NbAiLab/wav2vec2-xlsr-300M-NPSC-OH](https://huggingface.co/NbAiLab/wav2vec2-xlsr-300M-NPSC-OH)



## Intended uses & limitations

Demo version only. The model will be updated later this week.



## Training and evaluation data

The model is trained and evaluated on [NPSC](https://huggingface.co/datasets/NbAiLab/NPSC). Unfortunately there is no Norwegian test data in Common Voice, and currently the model is only evaluated on the validation set of NPSC..



## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 2000
- num_epochs: 30.0 (But interrupted after 8500 steps, approx 6 epochs)

- mixed_precision_training: Native AMP