File size: 4,659 Bytes
3f0c5b3
3e33a6c
3f0c5b3
 
3e33a6c
 
 
15a2d23
3e33a6c
15a2d23
3e33a6c
 
 
 
3f0c5b3
 
3e33a6c
 
15a2d23
3e33a6c
 
 
 
 
 
15a2d23
 
 
 
 
 
3f0c5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- false
- nb-NO
- hf-asr-leaderboard
datasets:
- NbAiLab/NPSC
language:
- nb-NO
model-index:
- name: wav2vec2-xls-r-300m-npsc-bokmaal
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: NPSC
      type: NbAiLab/NPSC
      args: 16K_mp3_bokmaal
    metrics:
    - name: "Test (Bokm\xE5l) WER"
      type: wer
      value: 0.07556265455560153
    - name: "Test (Bokm\xE5l) CER"
      type: cer
      value: 0.028191288775481386
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-npsc-bokmaal

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1663
- Wer: 0.0932

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0969        | 0.32  | 500   | 0.1773          | 0.1054 |
| 0.0929        | 0.64  | 1000  | 0.1672          | 0.1061 |
| 0.1018        | 0.97  | 1500  | 0.1770          | 0.1067 |
| 0.0871        | 1.29  | 2000  | 0.1832          | 0.1087 |
| 0.0908        | 1.61  | 2500  | 0.1830          | 0.1101 |
| 0.0975        | 1.93  | 3000  | 0.1848          | 0.1100 |
| 0.0936        | 2.26  | 3500  | 0.1853          | 0.1113 |
| 0.1025        | 2.58  | 4000  | 0.1958          | 0.1149 |
| 0.0989        | 2.9   | 4500  | 0.1776          | 0.1123 |
| 0.0946        | 3.22  | 5000  | 0.1825          | 0.1097 |
| 0.0859        | 3.55  | 5500  | 0.1864          | 0.1072 |
| 0.0867        | 3.87  | 6000  | 0.1886          | 0.1081 |
| 0.0783        | 4.19  | 6500  | 0.1883          | 0.1063 |
| 0.0804        | 4.51  | 7000  | 0.1831          | 0.1063 |
| 0.0797        | 4.84  | 7500  | 0.1884          | 0.1058 |
| 0.0705        | 5.16  | 8000  | 0.1802          | 0.1057 |
| 0.0795        | 5.48  | 8500  | 0.1854          | 0.1038 |
| 0.0711        | 5.8   | 9000  | 0.1766          | 0.1032 |
| 0.0973        | 6.13  | 9500  | 0.1663          | 0.1014 |
| 0.087         | 6.45  | 10000 | 0.1664          | 0.1014 |
| 0.0962        | 6.77  | 10500 | 0.1631          | 0.1009 |
| 0.0857        | 7.09  | 11000 | 0.1659          | 0.1002 |
| 0.0882        | 7.41  | 11500 | 0.1668          | 0.1007 |
| 0.0784        | 7.74  | 12000 | 0.1688          | 0.0996 |
| 0.0838        | 8.06  | 12500 | 0.1675          | 0.0984 |
| 0.0863        | 8.38  | 13000 | 0.1639          | 0.0979 |
| 0.0763        | 8.7   | 13500 | 0.1638          | 0.0980 |
| 0.0822        | 9.03  | 14000 | 0.1709          | 0.0972 |
| 0.0769        | 9.35  | 14500 | 0.1700          | 0.0965 |
| 0.0838        | 9.67  | 15000 | 0.1703          | 0.0974 |
| 0.0799        | 9.99  | 15500 | 0.1667          | 0.0957 |
| 0.0712        | 10.32 | 16000 | 0.1754          | 0.0960 |
| 0.0737        | 10.64 | 16500 | 0.1725          | 0.0968 |
| 0.0851        | 10.96 | 17000 | 0.1733          | 0.0958 |
| 0.076         | 11.28 | 17500 | 0.1682          | 0.0954 |
| 0.0712        | 11.61 | 18000 | 0.1713          | 0.0943 |
| 0.0745        | 11.93 | 18500 | 0.1662          | 0.0951 |
| 0.0864        | 12.25 | 19000 | 0.1692          | 0.0947 |
| 0.0937        | 12.57 | 19500 | 0.1624          | 0.0943 |
| 0.0915        | 12.89 | 20000 | 0.1678          | 0.0942 |
| 0.0926        | 13.22 | 20500 | 0.1641          | 0.0945 |
| 0.0912        | 13.54 | 21000 | 0.1665          | 0.0937 |
| 0.0917        | 13.86 | 21500 | 0.1648          | 0.0936 |
| 0.094         | 14.18 | 22000 | 0.1635          | 0.0935 |
| 0.0864        | 14.51 | 22500 | 0.1678          | 0.0934 |
| 0.0899        | 14.83 | 23000 | 0.1663          | 0.0932 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0