File size: 4,659 Bytes
3f0c5b3 3e33a6c 3f0c5b3 3e33a6c 15a2d23 3e33a6c 15a2d23 3e33a6c 3f0c5b3 3e33a6c 15a2d23 3e33a6c 15a2d23 3f0c5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- false
- nb-NO
- hf-asr-leaderboard
datasets:
- NbAiLab/NPSC
language:
- nb-NO
model-index:
- name: wav2vec2-xls-r-300m-npsc-bokmaal
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_bokmaal
metrics:
- name: "Test (Bokm\xE5l) WER"
type: wer
value: 0.07556265455560153
- name: "Test (Bokm\xE5l) CER"
type: cer
value: 0.028191288775481386
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-npsc-bokmaal
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1663
- Wer: 0.0932
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0969 | 0.32 | 500 | 0.1773 | 0.1054 |
| 0.0929 | 0.64 | 1000 | 0.1672 | 0.1061 |
| 0.1018 | 0.97 | 1500 | 0.1770 | 0.1067 |
| 0.0871 | 1.29 | 2000 | 0.1832 | 0.1087 |
| 0.0908 | 1.61 | 2500 | 0.1830 | 0.1101 |
| 0.0975 | 1.93 | 3000 | 0.1848 | 0.1100 |
| 0.0936 | 2.26 | 3500 | 0.1853 | 0.1113 |
| 0.1025 | 2.58 | 4000 | 0.1958 | 0.1149 |
| 0.0989 | 2.9 | 4500 | 0.1776 | 0.1123 |
| 0.0946 | 3.22 | 5000 | 0.1825 | 0.1097 |
| 0.0859 | 3.55 | 5500 | 0.1864 | 0.1072 |
| 0.0867 | 3.87 | 6000 | 0.1886 | 0.1081 |
| 0.0783 | 4.19 | 6500 | 0.1883 | 0.1063 |
| 0.0804 | 4.51 | 7000 | 0.1831 | 0.1063 |
| 0.0797 | 4.84 | 7500 | 0.1884 | 0.1058 |
| 0.0705 | 5.16 | 8000 | 0.1802 | 0.1057 |
| 0.0795 | 5.48 | 8500 | 0.1854 | 0.1038 |
| 0.0711 | 5.8 | 9000 | 0.1766 | 0.1032 |
| 0.0973 | 6.13 | 9500 | 0.1663 | 0.1014 |
| 0.087 | 6.45 | 10000 | 0.1664 | 0.1014 |
| 0.0962 | 6.77 | 10500 | 0.1631 | 0.1009 |
| 0.0857 | 7.09 | 11000 | 0.1659 | 0.1002 |
| 0.0882 | 7.41 | 11500 | 0.1668 | 0.1007 |
| 0.0784 | 7.74 | 12000 | 0.1688 | 0.0996 |
| 0.0838 | 8.06 | 12500 | 0.1675 | 0.0984 |
| 0.0863 | 8.38 | 13000 | 0.1639 | 0.0979 |
| 0.0763 | 8.7 | 13500 | 0.1638 | 0.0980 |
| 0.0822 | 9.03 | 14000 | 0.1709 | 0.0972 |
| 0.0769 | 9.35 | 14500 | 0.1700 | 0.0965 |
| 0.0838 | 9.67 | 15000 | 0.1703 | 0.0974 |
| 0.0799 | 9.99 | 15500 | 0.1667 | 0.0957 |
| 0.0712 | 10.32 | 16000 | 0.1754 | 0.0960 |
| 0.0737 | 10.64 | 16500 | 0.1725 | 0.0968 |
| 0.0851 | 10.96 | 17000 | 0.1733 | 0.0958 |
| 0.076 | 11.28 | 17500 | 0.1682 | 0.0954 |
| 0.0712 | 11.61 | 18000 | 0.1713 | 0.0943 |
| 0.0745 | 11.93 | 18500 | 0.1662 | 0.0951 |
| 0.0864 | 12.25 | 19000 | 0.1692 | 0.0947 |
| 0.0937 | 12.57 | 19500 | 0.1624 | 0.0943 |
| 0.0915 | 12.89 | 20000 | 0.1678 | 0.0942 |
| 0.0926 | 13.22 | 20500 | 0.1641 | 0.0945 |
| 0.0912 | 13.54 | 21000 | 0.1665 | 0.0937 |
| 0.0917 | 13.86 | 21500 | 0.1648 | 0.0936 |
| 0.094 | 14.18 | 22000 | 0.1635 | 0.0935 |
| 0.0864 | 14.51 | 22500 | 0.1678 | 0.0934 |
| 0.0899 | 14.83 | 23000 | 0.1663 | 0.0932 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|