NamCyan commited on
Commit
849dd19
·
verified ·
1 Parent(s): 435902e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -177
README.md CHANGED
@@ -1,199 +1,77 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - NamCyan/tesoro-code
5
+ base_model:
6
+ - microsoft/codebert-base
7
  ---
8
 
9
+ # Improving the detection of technical debt in Java source code with an enriched dataset
 
 
 
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ This model is the part of Tesoro project, used for detecting technical debt in source code. More information can be found at [Tesoro HomePage](https://github.com/NamCyan/tesoro.git).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ - **Developed by:** [Nam Hai Le](https://github.com/NamCyan)
19
+ - **Model type:** Encoder-based PLMs
20
+ - **Language(s):** Java
21
+ - **Finetuned from model:** [CodeBERT](https://huggingface.co/microsoft/codebert-base)
22
 
23
+ ### Model Sources
24
 
25
+ - **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git)
26
+ - **Paper:** [To be update]
27
 
28
  ## How to Get Started with the Model
29
 
30
  Use the code below to get started with the model.
31
 
32
+ ```python
33
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained("NamCyan/codebert-base-technical-debt-code-tesoro")
36
+ model = AutoModelForSequenceClassification.from_pretrained("NamCyan/codebert-base-technical-debt-code-tesoro")
37
+ ```
38
 
 
39
 
40
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ - Training Data: The model is finetuned using [tesoro-code](https://huggingface.co/datasets/NamCyan/tesoro-code)
43
+
44
+ - Infrastructure: Training process is conducted on two NVIDIA A100 GPUs with 80GB of VRAM.
45
+
46
+ ## Leaderboard
47
+ | Model | Model size | EM | F1 |
48
+ |:-------------|:-----------|:------------------|:------------------|
49
+ | **Encoder-based PLMs** |
50
+ | [CodeBERT](https://huggingface.co/microsoft/codebert-base) | 125M | 38.28 | 43.47 |
51
+ | [UniXCoder](https://huggingface.co/microsoft/unixcoder-base) | 125M | 38.12 | 42.58 |
52
+ | [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base)| 125M | *39.38* | *44.21* |
53
+ | [RoBERTa](https://huggingface.co/FacebookAI/roberta-base) | 125M | 35.37 | 38.22 |
54
+ | [ALBERT](https://huggingface.co/albert/albert-base-v2) | 11.8M | 39.32 | 41.99 |
55
+ | **Encoder-Decoder-based PLMs** |
56
+ | [PLBART](https://huggingface.co/uclanlp/plbart-base) | 140M | 36.85 | 39.90 |
57
+ | [Codet5](https://huggingface.co/Salesforce/codet5-base) | 220M | 32.66 | 35.41 |
58
+ | [CodeT5+](https://huggingface.co/Salesforce/codet5p-220m) | 220M | 37.91 | 41.96 |
59
+ | **Decoder-based PLMs (LLMs)** |
60
+ | [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama_v1.1_math_code) | 1.03B | 37.05 | 40.05 |
61
+ | [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) | 1.28B | **42.52** | **46.19** |
62
+ | [OpenCodeInterpreter](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B) | 1.35B | 38.16 | 41.76 |
63
+ | [phi-2](https://huggingface.co/microsoft/phi-2) | 2.78B | 37.92 | 41.57 |
64
+ | [starcoder2](https://huggingface.co/bigcode/starcoder2-3b) | 3.03B | 35.37 | 41.77 |
65
+ | [CodeLlama](https://huggingface.co/codellama/CodeLlama-7b-hf) | 6.74B | 34.14 | 38.16 |
66
+ | [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B) | 6.74B | 39.14 | 42.49 |
67
+
68
+
69
+ ## Citing us
70
+ ```bibtex
71
+ @article{nam2024tesoro,
72
+ title={Improving the detection of technical debt in Java source code with an enriched dataset},
73
+ author={Hai, Nam Le and Bui, Anh M. T. Bui and Nguyen, Phuong T. and Ruscio, Davide Di and Kazman, Rick},
74
+ journal={},
75
+ year={2024}
76
+ }
77
+ ```