Nada-10 commited on
Commit
29e1846
·
verified ·
1 Parent(s): 2a3f848

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:800
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Can you provide the definition of deaerating chamber?
16
+ sentences:
17
+ - 冷却水中に含まれる泥砂を沈澱させる池。
18
+ - 脱気室の上部にあって、溶存ガスを分離する室。
19
+ - 制御系の状態を変えようとする外的作用。
20
+ - source_sentence: Explain the definition of sodium phosphate dibasic.
21
+ sentences:
22
+ - 作用は、第3リン酸ソーダと同様であるがアルカリ性は弱い。
23
+ - タービン起動停止時または主油ポンプが異常の場合に自動起動し制御油および軸受油を供給するポンプ。
24
+ - 内筒の外側における空気の流れの方向と燃焼の進行する方向とが逆向きになっている燃焼器。
25
+ - source_sentence: 抽気 をどのように定義しますか?
26
+ sentences:
27
+ - 所内電源喪失時に密封油制御装置の電源を確保するための直流電動機駆動の交流発電機。
28
+ - 他に使用する目的で圧縮機の出口側若しくは圧縮過程の途中から気体を抜き出すこと。又はそのようにし て抜き出された気体。
29
+ - 排ガス中の酸素の割合を示すものであり、連続指示ができるためボイラの燃焼管理上重要な計器で、Eco出口のガスO2その他のO2の指示を与える。動作原理は水素との燃焼熱量によって算出される燃焼式、及びO2の磁化率が大きいことを利用した磁気式がある。
30
+ - source_sentence: What is the explanation of outer casing?
31
+ sentences:
32
+ - 二重構造のケーシングで、直接高圧蒸気にふれない外側のケーシング。
33
+ - 伸縮自在継手のことで、タービン低圧排気室と復水器との継目に使用してある。これにより膨張収縮を吸収し本体と管束間の不等の膨張歪を減少する。
34
+ - 操作信号を受けて信号に見合った開度に自動操作される弁。火力発電所弁類名称基準参照。
35
+ - source_sentence: Describe the meaning of diesel generator panel.
36
+ sentences:
37
+ - ユニットのタイプ別にpH、シリカ、電導率、溶存酸素量等の目標値を定めたもの。
38
+ - 取水口などのスクリーンを制御する盤。
39
+ - ディーゼル発電機の制御、操作、監視などを行う盤。
40
+ ---
41
+
42
+ # SentenceTransformer based on intfloat/multilingual-e5-small
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision 0a68dcd3dad5b4962a78daa930087728292b241d -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 384 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ <!-- - **Training Dataset:** Unknown -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
69
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ (2): Normalize()
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("Nada-10/multilingual-e5-small-finetuned")
90
+ # Run inference
91
+ sentences = [
92
+ 'Describe the meaning of diesel generator panel.',
93
+ 'ディーゼル発電機の制御、操作、監視などを行う盤。',
94
+ '取水口などのスクリーンを制御する��。',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 384]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 800 training samples
150
+ * Columns: <code>anchor</code> and <code>positive</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | anchor | positive |
153
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string |
155
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.91 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.73 tokens</li><li>max: 86 tokens</li></ul> |
156
+ * Samples:
157
+ | anchor | positive |
158
+ |:------------------------------------------------------------|:------------------------------------------------------|
159
+ | <code>火力発電所の定義を説明してください。</code> | <code>石油、石炭、天然ガス、高炉ガスなどのもつ熱エネルギーを利用して発電するプラント。</code> |
160
+ | <code>What does the term steam power plant refer to?</code> | <code>蒸気タービンにより発電するプラント。</code> |
161
+ | <code>ガスタービン発電所の機能は何ですか?</code> | <code>ガスタービンにより発電するプラント。</code> |
162
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
+ ```json
164
+ {
165
+ "scale": 20.0,
166
+ "similarity_fct": "cos_sim"
167
+ }
168
+ ```
169
+
170
+ ### Evaluation Dataset
171
+
172
+ #### Unnamed Dataset
173
+
174
+
175
+ * Size: 1,008 evaluation samples
176
+ * Columns: <code>anchor</code> and <code>positive</code>
177
+ * Approximate statistics based on the first 1000 samples:
178
+ | | anchor | positive |
179
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
180
+ | type | string | string |
181
+ | details | <ul><li>min: 7 tokens</li><li>mean: 13.45 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 28.35 tokens</li><li>max: 123 tokens</li></ul> |
182
+ * Samples:
183
+ | anchor | positive |
184
+ |:--------------------------------------------------|:-------------------------------------|
185
+ | <code>What is the explanation of ash gate?</code> | <code>アッシュホッパからクリンカを排出するゲート。</code> |
186
+ | <code>クリンカクラッシャをどのように定義しますか?</code> | <code>クリンカを適当な大きさに破砕する機械。</code> |
187
+ | <code>What is meant by jet pump?</code> | <code>圧力水を噴射させクリンカを水力輸送するポンプ。</code> |
188
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
189
+ ```json
190
+ {
191
+ "scale": 20.0,
192
+ "similarity_fct": "cos_sim"
193
+ }
194
+ ```
195
+
196
+ ### Training Hyperparameters
197
+ #### Non-Default Hyperparameters
198
+
199
+ - `eval_strategy`: steps
200
+ - `per_device_train_batch_size`: 16
201
+ - `per_device_eval_batch_size`: 16
202
+ - `num_train_epochs`: 5
203
+ - `warmup_ratio`: 0.2
204
+ - `fp16`: True
205
+ - `batch_sampler`: no_duplicates
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: steps
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `learning_rate`: 5e-05
221
+ - `weight_decay`: 0.0
222
+ - `adam_beta1`: 0.9
223
+ - `adam_beta2`: 0.999
224
+ - `adam_epsilon`: 1e-08
225
+ - `max_grad_norm`: 1.0
226
+ - `num_train_epochs`: 5
227
+ - `max_steps`: -1
228
+ - `lr_scheduler_type`: linear
229
+ - `lr_scheduler_kwargs`: {}
230
+ - `warmup_ratio`: 0.2
231
+ - `warmup_steps`: 0
232
+ - `log_level`: passive
233
+ - `log_level_replica`: warning
234
+ - `log_on_each_node`: True
235
+ - `logging_nan_inf_filter`: True
236
+ - `save_safetensors`: True
237
+ - `save_on_each_node`: False
238
+ - `save_only_model`: False
239
+ - `restore_callback_states_from_checkpoint`: False
240
+ - `no_cuda`: False
241
+ - `use_cpu`: False
242
+ - `use_mps_device`: False
243
+ - `seed`: 42
244
+ - `data_seed`: None
245
+ - `jit_mode_eval`: False
246
+ - `use_ipex`: False
247
+ - `bf16`: False
248
+ - `fp16`: True
249
+ - `fp16_opt_level`: O1
250
+ - `half_precision_backend`: auto
251
+ - `bf16_full_eval`: False
252
+ - `fp16_full_eval`: False
253
+ - `tf32`: None
254
+ - `local_rank`: 0
255
+ - `ddp_backend`: None
256
+ - `tpu_num_cores`: None
257
+ - `tpu_metrics_debug`: False
258
+ - `debug`: []
259
+ - `dataloader_drop_last`: False
260
+ - `dataloader_num_workers`: 0
261
+ - `dataloader_prefetch_factor`: None
262
+ - `past_index`: -1
263
+ - `disable_tqdm`: False
264
+ - `remove_unused_columns`: True
265
+ - `label_names`: None
266
+ - `load_best_model_at_end`: False
267
+ - `ignore_data_skip`: False
268
+ - `fsdp`: []
269
+ - `fsdp_min_num_params`: 0
270
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
271
+ - `fsdp_transformer_layer_cls_to_wrap`: None
272
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
273
+ - `deepspeed`: None
274
+ - `label_smoothing_factor`: 0.0
275
+ - `optim`: adamw_torch
276
+ - `optim_args`: None
277
+ - `adafactor`: False
278
+ - `group_by_length`: False
279
+ - `length_column_name`: length
280
+ - `ddp_find_unused_parameters`: None
281
+ - `ddp_bucket_cap_mb`: None
282
+ - `ddp_broadcast_buffers`: False
283
+ - `dataloader_pin_memory`: True
284
+ - `dataloader_persistent_workers`: False
285
+ - `skip_memory_metrics`: True
286
+ - `use_legacy_prediction_loop`: False
287
+ - `push_to_hub`: False
288
+ - `resume_from_checkpoint`: None
289
+ - `hub_model_id`: None
290
+ - `hub_strategy`: every_save
291
+ - `hub_private_repo`: False
292
+ - `hub_always_push`: False
293
+ - `gradient_checkpointing`: False
294
+ - `gradient_checkpointing_kwargs`: None
295
+ - `include_inputs_for_metrics`: False
296
+ - `eval_do_concat_batches`: True
297
+ - `fp16_backend`: auto
298
+ - `push_to_hub_model_id`: None
299
+ - `push_to_hub_organization`: None
300
+ - `mp_parameters`:
301
+ - `auto_find_batch_size`: False
302
+ - `full_determinism`: False
303
+ - `torchdynamo`: None
304
+ - `ray_scope`: last
305
+ - `ddp_timeout`: 1800
306
+ - `torch_compile`: False
307
+ - `torch_compile_backend`: None
308
+ - `torch_compile_mode`: None
309
+ - `dispatch_batches`: None
310
+ - `split_batches`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `batch_sampler`: no_duplicates
318
+ - `multi_dataset_batch_sampler`: proportional
319
+
320
+ </details>
321
+
322
+ ### Training Logs
323
+ | Epoch | Step | Training Loss | loss |
324
+ |:-----:|:----:|:-------------:|:------:|
325
+ | 2.0 | 100 | 0.8734 | 1.4281 |
326
+ | 4.0 | 200 | 0.3795 | 1.4617 |
327
+
328
+
329
+ ### Framework Versions
330
+ - Python: 3.11.7
331
+ - Sentence Transformers: 3.0.1
332
+ - Transformers: 4.42.4
333
+ - PyTorch: 2.3.1+cpu
334
+ - Accelerate: 0.32.1
335
+ - Datasets: 2.20.0
336
+ - Tokenizers: 0.19.1
337
+
338
+ ## Citation
339
+
340
+ ### BibTeX
341
+
342
+ #### Sentence Transformers
343
+ ```bibtex
344
+ @inproceedings{reimers-2019-sentence-bert,
345
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
+ author = "Reimers, Nils and Gurevych, Iryna",
347
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
+ month = "11",
349
+ year = "2019",
350
+ publisher = "Association for Computational Linguistics",
351
+ url = "https://arxiv.org/abs/1908.10084",
352
+ }
353
+ ```
354
+
355
+ #### MultipleNegativesRankingLoss
356
+ ```bibtex
357
+ @misc{henderson2017efficient,
358
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
359
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
360
+ year={2017},
361
+ eprint={1705.00652},
362
+ archivePrefix={arXiv},
363
+ primaryClass={cs.CL}
364
+ }
365
+ ```
366
+
367
+ <!--
368
+ ## Glossary
369
+
370
+ *Clearly define terms in order to be accessible across audiences.*
371
+ -->
372
+
373
+ <!--
374
+ ## Model Card Authors
375
+
376
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
377
+ -->
378
+
379
+ <!--
380
+ ## Model Card Contact
381
+
382
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
383
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/multilingual-e5-small/checkpoint-250",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6319f239614ac824d1fae6f5443efb46190de8a252bbbeada2f37d4443117cd
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }