Na0s commited on
Commit
632370a
·
verified ·
1 Parent(s): f4894a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -162
README.md CHANGED
@@ -1,144 +1,88 @@
1
  ---
 
2
  library_name: transformers
3
  pipeline_tag: text-generation
4
  datasets:
5
  - meta-math/MetaMathQA
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
 
78
  ## Training Details
79
 
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
- #### Training Hyperparameters
96
 
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
 
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
 
109
- ### Testing Data, Factors & Metrics
110
 
111
- #### Testing Data
112
 
113
  <!-- This should link to a Dataset Card if possible. -->
114
 
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
 
131
- [More Information Needed]
132
 
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
 
143
  ## Environmental Impact
144
 
@@ -146,56 +90,5 @@ Use the code below to get started with the model.
146
 
147
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
 
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
 
199
- ## Model Card Contact
200
 
201
- [More Information Needed]
 
1
  ---
2
+ base_model: Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-1.0
3
  library_name: transformers
4
  pipeline_tag: text-generation
5
  datasets:
6
  - meta-math/MetaMathQA
7
  ---
8
 
9
+ <a href="https://ibb.co/4jPnqYk"><img src="https://i.ibb.co/qRk3SW6/DALL-E-2024-08-08-05-52-48-Craft-an-epic-and-historic-image-for-a-model-card-blending-elements-of-an.webp" alt="DALL-E-2024-08-08-05-52-48-Craft-an-epic-and-historic-image-for-a-model-card-blending-elements-of-an" border="0"></a>
 
 
 
10
 
11
+ # Model Card for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-2.0
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
+ - **Finetuned from model:[Na0s/Llama-3.1-8b-Pruned-4-Layers-1.0]**
17
 
18
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## Training Details
21
 
22
+ model = FastLanguageModel.get_peft_model(
23
+ model,
24
+ r = 4,
25
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
26
+ "gate_proj", "up_proj", "down_proj",],
27
+ lora_alpha = 4,
28
+ lora_dropout = 0.05,
29
+ bias = "none",
30
+
31
+ use_gradient_checkpointing = "unsloth",
32
+ random_state = 3407,
33
+ use_rslora = False,
34
+ loftq_config = None,
35
+ )
36
+
37
+ from trl import SFTTrainer
38
+ from transformers import TrainingArguments
39
+ from unsloth import is_bfloat16_supported
40
+
41
+ trainer = SFTTrainer(
42
+ model = model,
43
+ tokenizer = tokenizer,
44
+ train_dataset = dataset,
45
+ dataset_text_field = "completion",
46
+ max_seq_length = max_seq_length,
47
+ dataset_num_proc = 2,
48
+ packing = False,
49
+ args = TrainingArguments(
50
+ per_device_train_batch_size = 10,
51
+ gradient_accumulation_steps = 4,
52
+ warmup_steps = 5,
53
+ max_steps=5000,
54
+ learning_rate = 2e-4,
55
+ fp16 = not is_bfloat16_supported(),
56
+ bf16 = is_bfloat16_supported(),
57
+ logging_steps = 1,
58
+ optim = "adamw_8bit",
59
+ weight_decay = 0.01,
60
+ lr_scheduler_type = "cosine",
61
+ seed = 3407,
62
+ output_dir = "outputs_4",
63
+ push_to_hub=True,
64
+ hub_always_push=True,
65
+ ),
66
+ )
67
 
 
68
 
 
69
 
70
+ ### Training Data
 
 
71
 
72
+ [meta-math/MetaMathQA]
73
 
74
  ## Evaluation
75
 
76
+ MMLU Pro 0-shot: 0.2872
77
 
 
78
 
79
+ #### Evaluation Data
80
 
81
  <!-- This should link to a Dataset Card if possible. -->
82
 
83
+ [TIGER-AI-Lab/MMLU-Pro]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
 
85
 
 
 
 
 
 
 
 
 
 
86
 
87
  ## Environmental Impact
88
 
 
90
 
91
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
 
94