--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - librispeech_dummy metrics: - wer model-index: - name: Whisper Small En - NT results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: LibriSpeech type: librispeech_dummy args: 'config: en, split: test' metrics: - type: wer value: 100.0 name: Wer --- # Whisper Small En - NT This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-----:| | 0.0 | 333.3333 | 1000 | nan | 100.0 | | 0.0 | 666.6667 | 2000 | nan | 100.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0