jjzha commited on
Commit
bf63a46
·
verified ·
1 Parent(s): 223b298

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -25,6 +25,47 @@ SnakModel comes as an instruction-tuned, and a base version. In addition, each m
25
 
26
  Text only, with instructions following the `[INST] {instruction} [/INST]` template.
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  **Output**
29
 
30
  Text only.
 
25
 
26
  Text only, with instructions following the `[INST] {instruction} [/INST]` template.
27
 
28
+ Quickstart:
29
+
30
+ Here is a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
31
+
32
+ ```
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model_name = "NLPnorth/snakmodel-7b-instruct"
36
+
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ model_name,
39
+ torch_dtype="auto",
40
+ device_map="auto"
41
+ )
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+
44
+ prompt = "Hvor ligger IT Universitet?"
45
+ messages = [
46
+ {"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."},
47
+ {"role": "user", "content": prompt}
48
+ ]
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True
53
+ )
54
+
55
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
56
+
57
+ generated_ids = model.generate(
58
+ **model_inputs,
59
+ max_new_tokens=20
60
+ )
61
+ generated_ids = [
62
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
63
+ ]
64
+
65
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
66
+ print(response)
67
+ ```
68
+
69
  **Output**
70
 
71
  Text only.