Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,47 @@ SnakModel comes as an instruction-tuned, and a base version. In addition, each m
|
|
25 |
|
26 |
Text only, with instructions following the `[INST] {instruction} [/INST]` template.
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
**Output**
|
29 |
|
30 |
Text only.
|
|
|
25 |
|
26 |
Text only, with instructions following the `[INST] {instruction} [/INST]` template.
|
27 |
|
28 |
+
Quickstart:
|
29 |
+
|
30 |
+
Here is a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
|
31 |
+
|
32 |
+
```
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
|
35 |
+
model_name = "NLPnorth/snakmodel-7b-instruct"
|
36 |
+
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
torch_dtype="auto",
|
40 |
+
device_map="auto"
|
41 |
+
)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
|
44 |
+
prompt = "Hvor ligger IT Universitet?"
|
45 |
+
messages = [
|
46 |
+
{"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."},
|
47 |
+
{"role": "user", "content": prompt}
|
48 |
+
]
|
49 |
+
text = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True
|
53 |
+
)
|
54 |
+
|
55 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
56 |
+
|
57 |
+
generated_ids = model.generate(
|
58 |
+
**model_inputs,
|
59 |
+
max_new_tokens=20
|
60 |
+
)
|
61 |
+
generated_ids = [
|
62 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
63 |
+
]
|
64 |
+
|
65 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
66 |
+
print(response)
|
67 |
+
```
|
68 |
+
|
69 |
**Output**
|
70 |
|
71 |
Text only.
|