--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: NLPmonster/layoutlmv3-for-receipt-understanding tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-for-complete-receipt-understanding results: [] --- # layoutlmv3-for-complete-receipt-understanding This model is a fine-tuned version of [NLPmonster/layoutlmv3-for-receipt-understanding](https://huggingface.co/NLPmonster/layoutlmv3-for-receipt-understanding) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5246 - Precision: 0.7795 - Recall: 0.7867 - F1: 0.7831 - Accuracy: 0.8572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2792 | 0.4425 | 50 | 0.5236 | 0.7608 | 0.7535 | 0.7571 | 0.8398 | | 0.3022 | 0.8850 | 100 | 0.5262 | 0.7709 | 0.7541 | 0.7624 | 0.8420 | | 0.2821 | 1.3274 | 150 | 0.5263 | 0.7704 | 0.7616 | 0.7660 | 0.8403 | | 0.2801 | 1.7699 | 200 | 0.5310 | 0.7645 | 0.7659 | 0.7652 | 0.8412 | | 0.2545 | 2.2124 | 250 | 0.5425 | 0.7606 | 0.7685 | 0.7645 | 0.8416 | | 0.2453 | 2.6549 | 300 | 0.5237 | 0.7624 | 0.7602 | 0.7613 | 0.8417 | | 0.2464 | 3.0973 | 350 | 0.5169 | 0.7699 | 0.7721 | 0.7710 | 0.8459 | | 0.2248 | 3.5398 | 400 | 0.5266 | 0.7666 | 0.7701 | 0.7683 | 0.8447 | | 0.2117 | 3.9823 | 450 | 0.5041 | 0.7754 | 0.7751 | 0.7753 | 0.8496 | | 0.1986 | 4.4248 | 500 | 0.5327 | 0.7673 | 0.7729 | 0.7701 | 0.8453 | | 0.1832 | 4.8673 | 550 | 0.5462 | 0.7658 | 0.7606 | 0.7632 | 0.8423 | | 0.1752 | 5.3097 | 600 | 0.5207 | 0.7738 | 0.7830 | 0.7783 | 0.8519 | | 0.1698 | 5.7522 | 650 | 0.5247 | 0.7737 | 0.7763 | 0.7750 | 0.8514 | | 0.1495 | 6.1947 | 700 | 0.5433 | 0.7702 | 0.7754 | 0.7727 | 0.8495 | | 0.1487 | 6.6372 | 750 | 0.5363 | 0.7731 | 0.7784 | 0.7757 | 0.8505 | | 0.1431 | 7.0796 | 800 | 0.5276 | 0.7792 | 0.7754 | 0.7773 | 0.8544 | | 0.1283 | 7.5221 | 850 | 0.5344 | 0.7752 | 0.7816 | 0.7784 | 0.8536 | | 0.1253 | 7.9646 | 900 | 0.5166 | 0.7887 | 0.7834 | 0.7861 | 0.8594 | | 0.1176 | 8.4071 | 950 | 0.5261 | 0.7794 | 0.7834 | 0.7814 | 0.8571 | | 0.1124 | 8.8496 | 1000 | 0.5246 | 0.7795 | 0.7867 | 0.7831 | 0.8572 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1