NDugar commited on
Commit
7058efe
·
1 Parent(s): 14ffb8e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - glue
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: mnlilearn
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: GLUE MNLI
19
+ type: glue
20
+ args: mnli
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9175142392188771
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mnlilearn
31
+
32
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4103
35
+ - Accuracy: 0.9175
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 6e-06
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_steps: 50
61
+ - num_epochs: 2.0
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
67
+ | 0.3631 | 1.0 | 49088 | 0.3129 | 0.9130 |
68
+ | 0.2267 | 2.0 | 98176 | 0.4157 | 0.9153 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.13.0.dev0
74
+ - Pytorch 1.10.0
75
+ - Datasets 1.15.2.dev0
76
+ - Tokenizers 0.10.3