--- language: - en - ko license: llama3.1 tags: - llama-3.1 - ncsoft - varco base_model: - meta-llama/Meta-Llama-3.1-8B --- ## Llama-VARCO-8B-Instruct ### About the Model **Llama-VARCO-8B-Instruct** is a *generative model* built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences. - **Developed by:** NC Research, Language Model Team - **Languages (NLP):** Korean, English - **License:** LLAMA 3.1 COMMUNITY LICENSE AGREEMENT - **Base model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) ## Uses ### Direct Use We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained( "NCSOFT/Llama-VARCO-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-VARCO-8B-Instruct") messages = [ {"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."}, {"role": "user", "content": "안녕하세요."} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) eos_token_id = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( inputs, eos_token_id=eos_token_id, max_length=8192 ) print(tokenizer.decode(outputs[0])) ``` ## Evaluation ### LogicKor We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure performance. For the judge model, we used the officially recommended gpt-4-1106-preview. The score includes only the 0-shot evaluation provided in the default. | Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall | |--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------| | [Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 | | [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 | | [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 | | [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98 | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |