File size: 10,284 Bytes
fe2d935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Deploy Llama-VARCO-8B-Instruct Model from AWS Marketplace \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "Llama-VARCO-8B-Instruct is a generative model built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.\n",
    "\n",
    "This sample notebook shows you how to deploy [Llama-VARCO-8B-Instruct](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e) using Amazon SageMaker.\n",
    "\n",
    "> **Note**: This is a reference notebook and it cannot run unless you make changes suggested in the notebook.\n",
    "\n",
    "## Pre-requisites:\n",
    "1. **Note**: This notebook contains elements which render correctly in Jupyter interface. Open this notebook from an Amazon SageMaker Notebook Instance or Amazon SageMaker Studio.\n",
    "1. Ensure that IAM role used has **AmazonSageMakerFullAccess**\n",
    "1. To deploy this ML model successfully, ensure that:\n",
    "    1. Either your IAM role has these three permissions and you have authority to make AWS Marketplace subscriptions in the AWS account used: \n",
    "        1. **aws-marketplace:ViewSubscriptions**\n",
    "        1. **aws-marketplace:Unsubscribe**\n",
    "        1. **aws-marketplace:Subscribe**  \n",
    "\n",
    "## Contents:\n",
    "1. [Subscribe to the model package](#1.-Subscribe-to-the-model-package)\n",
    "2. [Create an endpoint and perform real-time inference](#2.-Create-an-endpoint-and-perform-real-time-inference)\n",
    "3. [Clean-up](#3.-Clean-up)\n",
    "\n",
    "    \n",
    "\n",
    "## Usage instructions\n",
    "You can run this notebook one cell at a time (By using Shift+Enter for running a cell)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Subscribe to the model package"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "To subscribe to the model package:\n",
    "1. Open the model package [listing page](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e)\n",
    "1. On the AWS Marketplace listing, click on the **Continue to subscribe** button.\n",
    "1. On the **Subscribe to this software** page, review and click on **\"Accept Offer\"** if you and your organization agrees with EULA, pricing, and support terms. \n",
    "1. Once you click on **Continue to configuration button** and then choose a **region**, you will see a **Product Arn** displayed. This is the model package ARN that you need to specify while creating a deployable model using Boto3. Copy the ARN corresponding to your region and specify the same in the following cell."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "model_package_arn = \"arn:aws:sagemaker:us-west-2:594846645681:model-package/llama-varco-8b-ist-bedrock-37339dbb44f23f488e24f8671eaa0494\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import base64\n",
    "import json\n",
    "import uuid\n",
    "from sagemaker import ModelPackage\n",
    "import sagemaker as sage\n",
    "from sagemaker import get_execution_role\n",
    "from sagemaker import ModelPackage\n",
    "import boto3\n",
    "from IPython.display import Image\n",
    "from PIL import Image as ImageEdit\n",
    "import numpy as np\n",
    "import io"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "role = get_execution_role()\n",
    "\n",
    "sagemaker_session = sage.Session()\n",
    "\n",
    "bucket = sagemaker_session.default_bucket()\n",
    "runtime = boto3.client(\"runtime.sagemaker\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Create an endpoint and perform real-time inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you want to understand how real-time inference with Amazon SageMaker works, see [Documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "model_name = \"Llama-VARCO-8B-Instruct\"\n",
    "\n",
    "content_type = \"application/json\"\n",
    "\n",
    "real_time_inference_instance_type = (\n",
    "    \"ml.g5.12xlarge\"\n",
    ")\n",
    "batch_transform_inference_instance_type = (\n",
    "    \"ml.g4dn.12xlarge\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### A.Create an endpoint"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create a deployable model from the model package.\n",
    "model = ModelPackage(\n",
    "    role=role, model_package_arn=model_package_arn, sagemaker_session=sagemaker_session\n",
    ")\n",
    "\n",
    "# Deploy the model\n",
    "predictor = model.deploy(1, real_time_inference_instance_type, endpoint_name=model_name)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Once endpoint has been created, you would be able to perform real-time inference."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### B.Create input payload"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "input = {\n",
    "    \"messages\": [\n",
    "        {\n",
    "            \"role\":\"user\",\n",
    "            \"content\":\"์•ˆ๋…• ๋„Œ ๋ˆ„๊ตฌ์•ผ?\"\n",
    "        }\n",
    "    ]\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### C. Perform real-time inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### C-1. Stream Inference Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "class VarcoInferenceStream():\n",
    "    def __init__(self, sagemaker_runtime, endpoint_name):\n",
    "        self.sagemaker_runtime = sagemaker_runtime\n",
    "        self.endpoint_name = endpoint_name\n",
    "\n",
    "    def stream_inference(self, request_body):\n",
    "        # Gets a streaming inference response\n",
    "        # from the specified model endpoint:\n",
    "        response = self.sagemaker_runtime\\\n",
    "            .invoke_endpoint_with_response_stream(\n",
    "                EndpointName=self.endpoint_name,\n",
    "                Body=json.dumps(request_body),\n",
    "                ContentType=\"application/json\"\n",
    "        )\n",
    "        # Gets the EventStream object returned by the SDK:\n",
    "        for body in response[\"Body\"]:\n",
    "            raw = body['PayloadPart']['Bytes']\n",
    "            yield raw.decode()\n",
    "\n",
    "\n",
    "sm_runtime = boto3.client(\"sagemaker-runtime\")\n",
    "varco_inference_stream = VarcoInferenceStream(sm_runtime, model_name)\n",
    "stream = varco_inference_stream.stream_inference(input)\n",
    "for part in stream:\n",
    "    print(part, end='')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## 3. Clean-up"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that you have successfully performed a real-time inference, you do not need the endpoint any more. You can terminate the endpoint to avoid being charged."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### A. Delete the endpoint"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.sagemaker_session.delete_endpoint(model_name)\n",
    "model.sagemaker_session.delete_endpoint_config(model_name)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### B. Delete the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.delete_model()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### C. Unsubscribe to the listing (optional)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you would like to unsubscribe to the model package, follow these steps. Before you cancel the subscription, ensure that you do not have any [deployable model](https://console.aws.amazon.com/sagemaker/home#/models) created from the model package or using the algorithm. Note - You can find this information by looking at the container name associated with the model. \n",
    "\n",
    "**Steps to unsubscribe to product from AWS Marketplace**:\n",
    "1. Navigate to __Machine Learning__ tab on [__Your Software subscriptions page__](https://aws.amazon.com/marketplace/ai/library?productType=ml&ref_=mlmp_gitdemo_indust)\n",
    "2. Locate the listing that you want to cancel the subscription for, and then choose __Cancel Subscription__  to cancel the subscription.\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "instance_type": "ml.t3.medium",
  "kernelspec": {
   "display_name": "conda_pytorch_p310",
   "language": "python",
   "name": "conda_pytorch_p310"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}