Omartificial-Intelligence-Space
commited on
Update readme.md
Browse files
README.md
CHANGED
@@ -13,3 +13,46 @@ tags:
|
|
13 |
- arabic
|
14 |
---
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- arabic
|
14 |
---
|
15 |
|
16 |
+
|
17 |
+
# ModernBERT Arabic Model Card
|
18 |
+
|
19 |
+
## Overview
|
20 |
+
This is an Arabic version of ModernBERT, a modernized bidirectional encoder-only Transformer model (BERT-style). ModernBERT was pre-trained on 2 trillion tokens of English and code data with a native context length of up to 8,192 tokens. You can find more about the base ModernBERT model here: [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base).
|
21 |
+
|
22 |
+
For this proof of concept, a tokenizer trained on Arabic Wikipedia was utilized:
|
23 |
+
- **Dataset:** Arabic Wikipedia
|
24 |
+
- **Size:** 1.8 GB
|
25 |
+
- **Tokens:** 228,788,529 tokens
|
26 |
+
|
27 |
+
This model demonstrates how ModernBERT can be adapted to Arabic for tasks like topic classification.
|
28 |
+
|
29 |
+
## Model Details
|
30 |
+
- **Epochs:** 3
|
31 |
+
- **Evaluation Metrics:**
|
32 |
+
- **F1 Score:** 0.9587811491105839
|
33 |
+
- **Loss:** 0.19986020028591156
|
34 |
+
- **Runtime:** 46.4942 seconds
|
35 |
+
- **Samples per second:** 305.006
|
36 |
+
- **Steps per second:** 38.134
|
37 |
+
- **Training Step:** 47,862
|
38 |
+
|
39 |
+
## How to Use
|
40 |
+
The model can be used for text classification using the `transformers` library. Below is an example:
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import pipeline
|
44 |
+
|
45 |
+
# Load model from huggingface.co/models using our repository ID
|
46 |
+
classifier = pipeline(
|
47 |
+
task="text-classification",
|
48 |
+
model="ModernBERT-domain-classifier/checkpoint-47862",
|
49 |
+
)
|
50 |
+
|
51 |
+
sample = '''
|
52 |
+
اسلام عددا من الوافدين الى الممكلة العربية السعوديه
|
53 |
+
'''
|
54 |
+
|
55 |
+
classifier(sample)
|
56 |
+
# [{'label': 'health', 'score': 0.6779336333274841}]
|
57 |
+
|
58 |
+
|