--- base_model: lvwerra/gpt2-imdb tags: - generated_from_trainer model-index: - name: gpt-imdb-alpha_0.7-beta_0.1 results: [] --- # gpt-imdb-alpha_0.7-beta_0.1 This model is a fine-tuned version of [lvwerra/gpt2-imdb](https://huggingface.co/lvwerra/gpt2-imdb) on an unknown dataset. It achieves the following results on the evaluation set: - Step: 7000 - Loss: 11466.6748 - Rewards/chosen: 0.1662 - Rewards/rejected: -0.5317 - Rewards/accuracies: 0.7937 - Rewards/margins: 0.6979 - Logps/rejected: -269.0021 - Logps/chosen: -233.6036 - Logits/rejected: -31.0907 - Logits/chosen: -31.5102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.1713 | 0.21 | 500 | 2.5800 | 0.3038 | -0.0770 | 0.7188 | 0.3808 | -264.4555 | -232.2277 | -33.8095 | -34.2861 | | 0.887 | 0.42 | 1000 | 21.3065 | 0.5505 | 0.1747 | 0.6917 | 0.3758 | -261.9387 | -229.7607 | -32.8001 | -33.3563 | | 0.798 | 0.63 | 1500 | 61.4252 | 0.5093 | -0.0100 | 0.7333 | 0.5193 | -263.7849 | -230.1718 | -30.8724 | -31.2678 | | 1.1771 | 0.83 | 2000 | 14.1653 | 0.6467 | 0.1330 | 0.6854 | 0.5138 | -262.3556 | -228.7979 | -33.4203 | -33.7502 | | 0.5587 | 1.04 | 2500 | 528756.25 | 0.5517 | -0.0428 | 0.7396 | 0.5944 | -264.1129 | -229.7487 | -32.9646 | -33.4291 | | 0.4833 | 1.25 | 3000 | 1178.0547 | 0.5836 | 0.0507 | 0.6958 | 0.5329 | -263.1786 | -229.4295 | -32.7156 | -33.0784 | | 0.6214 | 1.46 | 3500 | 4177.1973 | 0.2927 | -0.3473 | 0.7562 | 0.6400 | -267.1580 | -232.3383 | -29.8543 | -30.1578 | | 18.5015 | 1.67 | 4000 | 513.4760 | 0.4129 | -0.2026 | 0.7479 | 0.6155 | -265.7109 | -231.1364 | -30.7645 | -31.1263 | | 0.3705 | 1.88 | 4500 | 135.9144 | 0.4609 | -0.1462 | 0.75 | 0.6071 | -265.1470 | -230.6563 | -30.2459 | -30.6495 | | 0.4778 | 2.08 | 5000 | 1561.6661 | 0.2544 | -0.4144 | 0.7792 | 0.6687 | -267.8289 | -232.7216 | -30.5732 | -30.9863 | | 0.3125 | 2.29 | 5500 | 8448.3389 | 0.2045 | -0.4842 | 0.7937 | 0.6887 | -268.5275 | -233.2203 | -31.2362 | -31.6616 | | 6.2284 | 2.5 | 6000 | 13438.1006 | 0.1295 | -0.5751 | 0.7937 | 0.7045 | -269.4362 | -233.9707 | -31.0171 | -31.4348 | | 2.1427 | 2.71 | 6500 | 13021.2812 | 0.1590 | -0.5409 | 0.7958 | 0.6999 | -269.0947 | -233.6758 | -31.1241 | -31.5456 | | 24.2387 | 2.92 | 7000 | 11466.6748 | 0.1662 | -0.5317 | 0.7937 | 0.6979 | -269.0021 | -233.6036 | -31.0907 | -31.5102 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0