MugheesAwan11 commited on
Commit
982fb20
·
verified ·
1 Parent(s): fbd0c24

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,926 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:7872
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: 'personal information within 45 days. If personal information was
35
+ sold, organizations must also identify and inform the consumer of the sources
36
+ of information, its collection purpose, and the categories of third parties to
37
+ whom the data was sold to. As per the CCPA, the following information must be
38
+ provided in an access request: The categories of personal information the business
39
+ has collected about the consumer in the preceding 12 months. For each category
40
+ identified, the categories of third parties to whom it disclosed that particular
41
+ category of personal information. The categories of sources from which the personal
42
+ information was collected. The business or commercial purpose for which it collected
43
+ or sold the personal information. The categories of third parties with whom the
44
+ business shares consumers’ Personal Information. The right to access is one of
45
+ the toughest articles for businesses to comply with because organizations need
46
+ to track the location of every consumer’s personal information in all on-premises
47
+ and multicloud data systems.'
48
+ sentences:
49
+ - What are the UCPA requirements for organizations regarding personal data handling,
50
+ including pseudonymous and sensitive data, and data transfer to third parties
51
+ in certain circumstances?
52
+ - What are the benefits of implementing CCPA for businesses in terms of reducing
53
+ costs, liabilities, and human effort while ensuring effortless compliance?
54
+ - What information must organizations provide regarding the categories of third
55
+ parties in relation to personal information under the CCPA?
56
+ - source_sentence: 'on businesses that meet these criteria, regardless of their physical
57
+ presence in Colorado. Colorado is a one-party consent state for recording conversations.
58
+ This means that as long as one participant in the conversation consents to the
59
+ recording, it is generally legal. However, it''s important to understand and adhere
60
+ to the specific legal requirements and limitations. ## Join Our Newsletter Get
61
+ all the latest information, law updates and more delivered to your inbox ### Share
62
+ Copy 41 ### More Stories that May Interest You View More September 21, 2023 ##
63
+ Navigating Generative AI Privacy Challenges & Safeguarding Tips Introduction The
64
+ emergence of Generative AI has ushered in a new era of innovation in the ever-evolving
65
+ technological landscape that pushes the boundaries of... View More September 15,
66
+ 2023 ## Right of Access to Personal Data: What To Know The wealth of data available'
67
+ sentences:
68
+ - What solutions does Oracle offer for data security and governance?
69
+ - What are the legal requirements for recording conversations in Colorado, considering
70
+ consent laws and data protection regulations?
71
+ - What are the key components of the NVIDIA computing platform?
72
+ - source_sentence: 'such personal data have been collected or where such collected
73
+ personal data are beyond the extent required, discriminatory, unfair or illegal.
74
+ ### Right to Erasure Data subjects can request omission or erasure of the personal
75
+ data upon cessation of the purpose for which the processing has been conducted,
76
+ or where all justifications for maintaining such personal data by the organization
77
+ cease to exist. ## Facts related to Qatar DPL 1 The DPL incorporates concepts
78
+ familiar from other international privacy frameworks to protect a consumer''s
79
+ personal data. 2 Under the DPL, a data controller is responsible for identifying
80
+ all parties who process personal data on its behalf. 3 In Qatar, the Compliance
81
+ and Data Protection department (the “CDP”)at MoTC is responsible for the enforcement
82
+ of the DPL. . 4 The MoTC can also impose fines of up to QAR 5 million (US$1.4
83
+ million)'
84
+ sentences:
85
+ - What is Securiti's mission regarding data protection laws and regulations?
86
+ - What is the role of the Nominating and Corporate Governance Committee at NVIDIA?
87
+ - What is the right to erasure and how does it apply to personal data in Qatar under
88
+ the DPL?
89
+ - source_sentence: '. It allows you to identify gaps in compliance and address the
90
+ risks. Seamlessly expand assessment capabilities across your vendor ecosystem
91
+ to maintain compliance against LPPD requirements. ## Map data flows Track data
92
+ flows in your organizations by having a centralized catalogue of internal data
93
+ process flows as well as flows for data transfer to service providers and other
94
+ third parties. ## Manage vendor risk Articles: 8, 9, 12 Track, manage and monitor
95
+ privacy and security readiness for all your service providers from a single interface.
96
+ Collaborate instantly with vendors, automate data requests, and manage all vendor
97
+ contracts and compliance documents. ## Breach Response Notification Article: 12(5),
98
+ Data Protection Board Decision 2019/10 Automates compliance actions and breach
99
+ notifications to concerned stakeholders in relation to security incidents by leveraging
100
+ a knowledge database on security incident diagnosis and response. ## Key data
101
+ subject rights encoded within LPPD Access: Data subjects have the right to access,
102
+ , and privacy impact assessment system, you can gauge your organization''s posture
103
+ against Qatar DPL requirements, identify the gaps, and address the risks. Seamlessly
104
+ being able to expand assessment capabilities across your vendor ecosystem to maintain
105
+ compliance against Qatar DPL requirements. ## Map data flows Articles: 23, 24,
106
+ 25 Track data flows in your organizations, trace this data, catalog, transfer,
107
+ and document business process flows internally and to service providers or third
108
+ parties. ## Manage vendor risk Articles: 15, 12 Keep track of privacy and security
109
+ readiness for all your service providers from a single interface. Collaborate
110
+ instantly with vendors, automate data requests and deletions, and manage all vendor
111
+ contracts and compliance documents. ## Breach Response Notification Articles:
112
+ 11(5), 14 Automates compliance actions and breach notifications to concerned stakeholders
113
+ in relation to security incidents by leveraging a knowledge database on security
114
+ incident diagnosis and response.'
115
+ sentences:
116
+ - What is the purpose of a centralized catalogue in managing data flows, vendor
117
+ risk, and compliance with LPPD and Qatar DPL requirements?
118
+ - What are the security requirements for data handlers according to Spain's Data
119
+ Protection Law?
120
+ - What are some key rights granted to data subjects under Bahrain PDPL?
121
+ - source_sentence: 'office of the ​​Federal Commissioner for Data Protection and Freedom
122
+ of Information, with its headquarters in the city of Bonn. It is led by a Federal
123
+ Commissioner, elected via a vote by the German Bundestag. Eligibility criteria
124
+ include being at least 35 years old, appropriate qualifications in the field of
125
+ data protection law gained through relevant professional experience. The Commissioner''s
126
+ term is for five years, which can be extended once. The Commissioner has the responsibility
127
+ to act as the primary office responsible for enforcing the Federal Data Protection
128
+ Act within Germany. Some of the office''s key responsibilities include: Advising
129
+ the Bundestag, the Bundesrat, and the Federal Government on administrative and
130
+ legislative measures related to data protection within the country; To oversee
131
+ and implement both the GDPR and Federal Data Protection Act within Germany; To
132
+ promote awareness within the public related to the risks, rules, safeguards, and
133
+ rights concerning the processing of personal data; To handle all, within Germany.
134
+ It supplements and aligns with the requirements of the EU GDPR. Yes, Germany is
135
+ covered by GDPR (General Data Protection Regulation). GDPR is a regulation that
136
+ applies uniformly across all EU member states, including Germany. The Federal
137
+ Data Protection Act established the office of the ​​Federal Commissioner for Data
138
+ Protection and Freedom of Information, with its headquarters in the city of Bonn.
139
+ It is led by a Federal Commissioner, elected via a vote by the German Bundestag.
140
+ Germany''s interpretation is the Bundesdatenschutzgesetz (BDSG), the German Federal
141
+ Data Protection Act. It mirrors the GDPR in all key areas while giving local German
142
+ regulatory authorities the power to enforce it more efficiently nationally. ##
143
+ Join Our Newsletter Get all the latest information, law updates and more delivered
144
+ to your inbox ### Share Copy 14 ### More Stories that May Interest You View More'
145
+ sentences:
146
+ - What is the collection and use of personal information by businesses?
147
+ - How does Data Mapping Automation optimize data governance and enable data security
148
+ and protection?
149
+ - What are the main responsibilities of the Federal Commissioner for Data Protection
150
+ and Freedom of Information in enforcing data protection laws in Germany, including
151
+ the GDPR and the Federal Data Protection Act?
152
+ model-index:
153
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
154
+ results:
155
+ - task:
156
+ type: information-retrieval
157
+ name: Information Retrieval
158
+ dataset:
159
+ name: dim 768
160
+ type: dim_768
161
+ metrics:
162
+ - type: cosine_accuracy@1
163
+ value: 0.6907216494845361
164
+ name: Cosine Accuracy@1
165
+ - type: cosine_accuracy@3
166
+ value: 0.8865979381443299
167
+ name: Cosine Accuracy@3
168
+ - type: cosine_accuracy@5
169
+ value: 0.9381443298969072
170
+ name: Cosine Accuracy@5
171
+ - type: cosine_accuracy@10
172
+ value: 0.9690721649484536
173
+ name: Cosine Accuracy@10
174
+ - type: cosine_precision@1
175
+ value: 0.6907216494845361
176
+ name: Cosine Precision@1
177
+ - type: cosine_precision@3
178
+ value: 0.29553264604810997
179
+ name: Cosine Precision@3
180
+ - type: cosine_precision@5
181
+ value: 0.18762886597938144
182
+ name: Cosine Precision@5
183
+ - type: cosine_precision@10
184
+ value: 0.09690721649484535
185
+ name: Cosine Precision@10
186
+ - type: cosine_recall@1
187
+ value: 0.6907216494845361
188
+ name: Cosine Recall@1
189
+ - type: cosine_recall@3
190
+ value: 0.8865979381443299
191
+ name: Cosine Recall@3
192
+ - type: cosine_recall@5
193
+ value: 0.9381443298969072
194
+ name: Cosine Recall@5
195
+ - type: cosine_recall@10
196
+ value: 0.9690721649484536
197
+ name: Cosine Recall@10
198
+ - type: cosine_ndcg@10
199
+ value: 0.8386189701330025
200
+ name: Cosine Ndcg@10
201
+ - type: cosine_mrr@10
202
+ value: 0.7955735558828344
203
+ name: Cosine Mrr@10
204
+ - type: cosine_map@100
205
+ value: 0.7967787552384278
206
+ name: Cosine Map@100
207
+ - task:
208
+ type: information-retrieval
209
+ name: Information Retrieval
210
+ dataset:
211
+ name: dim 512
212
+ type: dim_512
213
+ metrics:
214
+ - type: cosine_accuracy@1
215
+ value: 0.6907216494845361
216
+ name: Cosine Accuracy@1
217
+ - type: cosine_accuracy@3
218
+ value: 0.8762886597938144
219
+ name: Cosine Accuracy@3
220
+ - type: cosine_accuracy@5
221
+ value: 0.9278350515463918
222
+ name: Cosine Accuracy@5
223
+ - type: cosine_accuracy@10
224
+ value: 0.9690721649484536
225
+ name: Cosine Accuracy@10
226
+ - type: cosine_precision@1
227
+ value: 0.6907216494845361
228
+ name: Cosine Precision@1
229
+ - type: cosine_precision@3
230
+ value: 0.2920962199312715
231
+ name: Cosine Precision@3
232
+ - type: cosine_precision@5
233
+ value: 0.18556701030927836
234
+ name: Cosine Precision@5
235
+ - type: cosine_precision@10
236
+ value: 0.09690721649484535
237
+ name: Cosine Precision@10
238
+ - type: cosine_recall@1
239
+ value: 0.6907216494845361
240
+ name: Cosine Recall@1
241
+ - type: cosine_recall@3
242
+ value: 0.8762886597938144
243
+ name: Cosine Recall@3
244
+ - type: cosine_recall@5
245
+ value: 0.9278350515463918
246
+ name: Cosine Recall@5
247
+ - type: cosine_recall@10
248
+ value: 0.9690721649484536
249
+ name: Cosine Recall@10
250
+ - type: cosine_ndcg@10
251
+ value: 0.8329963353635171
252
+ name: Cosine Ndcg@10
253
+ - type: cosine_mrr@10
254
+ value: 0.7889011618393064
255
+ name: Cosine Mrr@10
256
+ - type: cosine_map@100
257
+ value: 0.7896128390908116
258
+ name: Cosine Map@100
259
+ - task:
260
+ type: information-retrieval
261
+ name: Information Retrieval
262
+ dataset:
263
+ name: dim 256
264
+ type: dim_256
265
+ metrics:
266
+ - type: cosine_accuracy@1
267
+ value: 0.6907216494845361
268
+ name: Cosine Accuracy@1
269
+ - type: cosine_accuracy@3
270
+ value: 0.8556701030927835
271
+ name: Cosine Accuracy@3
272
+ - type: cosine_accuracy@5
273
+ value: 0.8969072164948454
274
+ name: Cosine Accuracy@5
275
+ - type: cosine_accuracy@10
276
+ value: 0.9381443298969072
277
+ name: Cosine Accuracy@10
278
+ - type: cosine_precision@1
279
+ value: 0.6907216494845361
280
+ name: Cosine Precision@1
281
+ - type: cosine_precision@3
282
+ value: 0.2852233676975945
283
+ name: Cosine Precision@3
284
+ - type: cosine_precision@5
285
+ value: 0.17938144329896905
286
+ name: Cosine Precision@5
287
+ - type: cosine_precision@10
288
+ value: 0.09381443298969072
289
+ name: Cosine Precision@10
290
+ - type: cosine_recall@1
291
+ value: 0.6907216494845361
292
+ name: Cosine Recall@1
293
+ - type: cosine_recall@3
294
+ value: 0.8556701030927835
295
+ name: Cosine Recall@3
296
+ - type: cosine_recall@5
297
+ value: 0.8969072164948454
298
+ name: Cosine Recall@5
299
+ - type: cosine_recall@10
300
+ value: 0.9381443298969072
301
+ name: Cosine Recall@10
302
+ - type: cosine_ndcg@10
303
+ value: 0.8161733445083468
304
+ name: Cosine Ndcg@10
305
+ - type: cosine_mrr@10
306
+ value: 0.7769595810832928
307
+ name: Cosine Mrr@10
308
+ - type: cosine_map@100
309
+ value: 0.7795708391204863
310
+ name: Cosine Map@100
311
+ - task:
312
+ type: information-retrieval
313
+ name: Information Retrieval
314
+ dataset:
315
+ name: dim 128
316
+ type: dim_128
317
+ metrics:
318
+ - type: cosine_accuracy@1
319
+ value: 0.5979381443298969
320
+ name: Cosine Accuracy@1
321
+ - type: cosine_accuracy@3
322
+ value: 0.7731958762886598
323
+ name: Cosine Accuracy@3
324
+ - type: cosine_accuracy@5
325
+ value: 0.8247422680412371
326
+ name: Cosine Accuracy@5
327
+ - type: cosine_accuracy@10
328
+ value: 0.8865979381443299
329
+ name: Cosine Accuracy@10
330
+ - type: cosine_precision@1
331
+ value: 0.5979381443298969
332
+ name: Cosine Precision@1
333
+ - type: cosine_precision@3
334
+ value: 0.25773195876288657
335
+ name: Cosine Precision@3
336
+ - type: cosine_precision@5
337
+ value: 0.16494845360824742
338
+ name: Cosine Precision@5
339
+ - type: cosine_precision@10
340
+ value: 0.08865979381443297
341
+ name: Cosine Precision@10
342
+ - type: cosine_recall@1
343
+ value: 0.5979381443298969
344
+ name: Cosine Recall@1
345
+ - type: cosine_recall@3
346
+ value: 0.7731958762886598
347
+ name: Cosine Recall@3
348
+ - type: cosine_recall@5
349
+ value: 0.8247422680412371
350
+ name: Cosine Recall@5
351
+ - type: cosine_recall@10
352
+ value: 0.8865979381443299
353
+ name: Cosine Recall@10
354
+ - type: cosine_ndcg@10
355
+ value: 0.7462462760759706
356
+ name: Cosine Ndcg@10
357
+ - type: cosine_mrr@10
358
+ value: 0.7009818360333826
359
+ name: Cosine Mrr@10
360
+ - type: cosine_map@100
361
+ value: 0.7046924157583041
362
+ name: Cosine Map@100
363
+ - task:
364
+ type: information-retrieval
365
+ name: Information Retrieval
366
+ dataset:
367
+ name: dim 64
368
+ type: dim_64
369
+ metrics:
370
+ - type: cosine_accuracy@1
371
+ value: 0.5154639175257731
372
+ name: Cosine Accuracy@1
373
+ - type: cosine_accuracy@3
374
+ value: 0.6804123711340206
375
+ name: Cosine Accuracy@3
376
+ - type: cosine_accuracy@5
377
+ value: 0.711340206185567
378
+ name: Cosine Accuracy@5
379
+ - type: cosine_accuracy@10
380
+ value: 0.7731958762886598
381
+ name: Cosine Accuracy@10
382
+ - type: cosine_precision@1
383
+ value: 0.5154639175257731
384
+ name: Cosine Precision@1
385
+ - type: cosine_precision@3
386
+ value: 0.2268041237113402
387
+ name: Cosine Precision@3
388
+ - type: cosine_precision@5
389
+ value: 0.1422680412371134
390
+ name: Cosine Precision@5
391
+ - type: cosine_precision@10
392
+ value: 0.07731958762886597
393
+ name: Cosine Precision@10
394
+ - type: cosine_recall@1
395
+ value: 0.5154639175257731
396
+ name: Cosine Recall@1
397
+ - type: cosine_recall@3
398
+ value: 0.6804123711340206
399
+ name: Cosine Recall@3
400
+ - type: cosine_recall@5
401
+ value: 0.711340206185567
402
+ name: Cosine Recall@5
403
+ - type: cosine_recall@10
404
+ value: 0.7731958762886598
405
+ name: Cosine Recall@10
406
+ - type: cosine_ndcg@10
407
+ value: 0.6463393588703956
408
+ name: Cosine Ndcg@10
409
+ - type: cosine_mrr@10
410
+ value: 0.6055105547373589
411
+ name: Cosine Mrr@10
412
+ - type: cosine_map@100
413
+ value: 0.6128426579691056
414
+ name: Cosine Map@100
415
+ ---
416
+
417
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
418
+
419
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
420
+
421
+ ## Model Details
422
+
423
+ ### Model Description
424
+ - **Model Type:** Sentence Transformer
425
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
426
+ - **Maximum Sequence Length:** 512 tokens
427
+ - **Output Dimensionality:** 768 tokens
428
+ - **Similarity Function:** Cosine Similarity
429
+ <!-- - **Training Dataset:** Unknown -->
430
+ - **Language:** en
431
+ - **License:** apache-2.0
432
+
433
+ ### Model Sources
434
+
435
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
436
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
437
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
438
+
439
+ ### Full Model Architecture
440
+
441
+ ```
442
+ SentenceTransformer(
443
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
444
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
445
+ (2): Normalize()
446
+ )
447
+ ```
448
+
449
+ ## Usage
450
+
451
+ ### Direct Usage (Sentence Transformers)
452
+
453
+ First install the Sentence Transformers library:
454
+
455
+ ```bash
456
+ pip install -U sentence-transformers
457
+ ```
458
+
459
+ Then you can load this model and run inference.
460
+ ```python
461
+ from sentence_transformers import SentenceTransformer
462
+
463
+ # Download from the 🤗 Hub
464
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v16")
465
+ # Run inference
466
+ sentences = [
467
+ "office of the \u200b\u200bFederal Commissioner for Data Protection and Freedom of Information, with its headquarters in the city of Bonn. It is led by a Federal Commissioner, elected via a vote by the German Bundestag. Eligibility criteria include being at least 35 years old, appropriate qualifications in the field of data protection law gained through relevant professional experience. The Commissioner's term is for five years, which can be extended once. The Commissioner has the responsibility to act as the primary office responsible for enforcing the Federal Data Protection Act within Germany. Some of the office's key responsibilities include: Advising the Bundestag, the Bundesrat, and the Federal Government on administrative and legislative measures related to data protection within the country; To oversee and implement both the GDPR and Federal Data Protection Act within Germany; To promote awareness within the public related to the risks, rules, safeguards, and rights concerning the processing of personal data; To handle all, within Germany. It supplements and aligns with the requirements of the EU GDPR. Yes, Germany is covered by GDPR (General Data Protection Regulation). GDPR is a regulation that applies uniformly across all EU member states, including Germany. The Federal Data Protection Act established the office of the \u200b\u200bFederal Commissioner for Data Protection and Freedom of Information, with its headquarters in the city of Bonn. It is led by a Federal Commissioner, elected via a vote by the German Bundestag. Germany's interpretation is the Bundesdatenschutzgesetz (BDSG), the German Federal Data Protection Act. It mirrors the GDPR in all key areas while giving local German regulatory authorities the power to enforce it more efficiently nationally. ## Join Our Newsletter Get all the latest information, law updates and more delivered to your inbox ### Share Copy 14 ### More Stories that May Interest You View More",
468
+ 'What are the main responsibilities of the Federal Commissioner for Data Protection and Freedom of Information in enforcing data protection laws in Germany, including the GDPR and the Federal Data Protection Act?',
469
+ 'What is the collection and use of personal information by businesses?',
470
+ ]
471
+ embeddings = model.encode(sentences)
472
+ print(embeddings.shape)
473
+ # [3, 768]
474
+
475
+ # Get the similarity scores for the embeddings
476
+ similarities = model.similarity(embeddings, embeddings)
477
+ print(similarities.shape)
478
+ # [3, 3]
479
+ ```
480
+
481
+ <!--
482
+ ### Direct Usage (Transformers)
483
+
484
+ <details><summary>Click to see the direct usage in Transformers</summary>
485
+
486
+ </details>
487
+ -->
488
+
489
+ <!--
490
+ ### Downstream Usage (Sentence Transformers)
491
+
492
+ You can finetune this model on your own dataset.
493
+
494
+ <details><summary>Click to expand</summary>
495
+
496
+ </details>
497
+ -->
498
+
499
+ <!--
500
+ ### Out-of-Scope Use
501
+
502
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
503
+ -->
504
+
505
+ ## Evaluation
506
+
507
+ ### Metrics
508
+
509
+ #### Information Retrieval
510
+ * Dataset: `dim_768`
511
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
512
+
513
+ | Metric | Value |
514
+ |:--------------------|:-----------|
515
+ | cosine_accuracy@1 | 0.6907 |
516
+ | cosine_accuracy@3 | 0.8866 |
517
+ | cosine_accuracy@5 | 0.9381 |
518
+ | cosine_accuracy@10 | 0.9691 |
519
+ | cosine_precision@1 | 0.6907 |
520
+ | cosine_precision@3 | 0.2955 |
521
+ | cosine_precision@5 | 0.1876 |
522
+ | cosine_precision@10 | 0.0969 |
523
+ | cosine_recall@1 | 0.6907 |
524
+ | cosine_recall@3 | 0.8866 |
525
+ | cosine_recall@5 | 0.9381 |
526
+ | cosine_recall@10 | 0.9691 |
527
+ | cosine_ndcg@10 | 0.8386 |
528
+ | cosine_mrr@10 | 0.7956 |
529
+ | **cosine_map@100** | **0.7968** |
530
+
531
+ #### Information Retrieval
532
+ * Dataset: `dim_512`
533
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
534
+
535
+ | Metric | Value |
536
+ |:--------------------|:-----------|
537
+ | cosine_accuracy@1 | 0.6907 |
538
+ | cosine_accuracy@3 | 0.8763 |
539
+ | cosine_accuracy@5 | 0.9278 |
540
+ | cosine_accuracy@10 | 0.9691 |
541
+ | cosine_precision@1 | 0.6907 |
542
+ | cosine_precision@3 | 0.2921 |
543
+ | cosine_precision@5 | 0.1856 |
544
+ | cosine_precision@10 | 0.0969 |
545
+ | cosine_recall@1 | 0.6907 |
546
+ | cosine_recall@3 | 0.8763 |
547
+ | cosine_recall@5 | 0.9278 |
548
+ | cosine_recall@10 | 0.9691 |
549
+ | cosine_ndcg@10 | 0.833 |
550
+ | cosine_mrr@10 | 0.7889 |
551
+ | **cosine_map@100** | **0.7896** |
552
+
553
+ #### Information Retrieval
554
+ * Dataset: `dim_256`
555
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
556
+
557
+ | Metric | Value |
558
+ |:--------------------|:-----------|
559
+ | cosine_accuracy@1 | 0.6907 |
560
+ | cosine_accuracy@3 | 0.8557 |
561
+ | cosine_accuracy@5 | 0.8969 |
562
+ | cosine_accuracy@10 | 0.9381 |
563
+ | cosine_precision@1 | 0.6907 |
564
+ | cosine_precision@3 | 0.2852 |
565
+ | cosine_precision@5 | 0.1794 |
566
+ | cosine_precision@10 | 0.0938 |
567
+ | cosine_recall@1 | 0.6907 |
568
+ | cosine_recall@3 | 0.8557 |
569
+ | cosine_recall@5 | 0.8969 |
570
+ | cosine_recall@10 | 0.9381 |
571
+ | cosine_ndcg@10 | 0.8162 |
572
+ | cosine_mrr@10 | 0.777 |
573
+ | **cosine_map@100** | **0.7796** |
574
+
575
+ #### Information Retrieval
576
+ * Dataset: `dim_128`
577
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
578
+
579
+ | Metric | Value |
580
+ |:--------------------|:-----------|
581
+ | cosine_accuracy@1 | 0.5979 |
582
+ | cosine_accuracy@3 | 0.7732 |
583
+ | cosine_accuracy@5 | 0.8247 |
584
+ | cosine_accuracy@10 | 0.8866 |
585
+ | cosine_precision@1 | 0.5979 |
586
+ | cosine_precision@3 | 0.2577 |
587
+ | cosine_precision@5 | 0.1649 |
588
+ | cosine_precision@10 | 0.0887 |
589
+ | cosine_recall@1 | 0.5979 |
590
+ | cosine_recall@3 | 0.7732 |
591
+ | cosine_recall@5 | 0.8247 |
592
+ | cosine_recall@10 | 0.8866 |
593
+ | cosine_ndcg@10 | 0.7462 |
594
+ | cosine_mrr@10 | 0.701 |
595
+ | **cosine_map@100** | **0.7047** |
596
+
597
+ #### Information Retrieval
598
+ * Dataset: `dim_64`
599
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
600
+
601
+ | Metric | Value |
602
+ |:--------------------|:-----------|
603
+ | cosine_accuracy@1 | 0.5155 |
604
+ | cosine_accuracy@3 | 0.6804 |
605
+ | cosine_accuracy@5 | 0.7113 |
606
+ | cosine_accuracy@10 | 0.7732 |
607
+ | cosine_precision@1 | 0.5155 |
608
+ | cosine_precision@3 | 0.2268 |
609
+ | cosine_precision@5 | 0.1423 |
610
+ | cosine_precision@10 | 0.0773 |
611
+ | cosine_recall@1 | 0.5155 |
612
+ | cosine_recall@3 | 0.6804 |
613
+ | cosine_recall@5 | 0.7113 |
614
+ | cosine_recall@10 | 0.7732 |
615
+ | cosine_ndcg@10 | 0.6463 |
616
+ | cosine_mrr@10 | 0.6055 |
617
+ | **cosine_map@100** | **0.6128** |
618
+
619
+ <!--
620
+ ## Bias, Risks and Limitations
621
+
622
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
623
+ -->
624
+
625
+ <!--
626
+ ### Recommendations
627
+
628
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
629
+ -->
630
+
631
+ ## Training Details
632
+
633
+ ### Training Dataset
634
+
635
+ #### Unnamed Dataset
636
+
637
+
638
+ * Size: 7,872 training samples
639
+ * Columns: <code>positive</code> and <code>anchor</code>
640
+ * Approximate statistics based on the first 1000 samples:
641
+ | | positive | anchor |
642
+ |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
643
+ | type | string | string |
644
+ | details | <ul><li>min: 18 tokens</li><li>mean: 206.12 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.62 tokens</li><li>max: 102 tokens</li></ul> |
645
+ * Samples:
646
+ | positive | anchor |
647
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|
648
+ | <code>Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of, PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its</code> | <code>What is the purpose of Third Party & Cookie Consent in data automation and security?</code> |
649
+ | <code>on both in terms of material and territorial scope. ### 1.1 Material Scope The Spanish data protection law affords blanket protection for all data that may have been collected on a data subject. There are only a handful of exceptions that include: Information subject to a pending legal case Information collected concerning the investigation of terrorism or organised crime Information classified as "Confidential" for matters related to Spain's national security ### 1.2 Territorial Scope The Spanish data protection law applies to all data handlers that are: Carrying out data collection activities in Spain Not established in Spain but carrying out data collection activities on Spanish territory Not established within the European Union but carrying out data collection activities on Spanish residents unless for data transit purposes only ## 2\. Obligations for Organizations Under Spanish Data Protection Law The Spanish data protection law and GDPR lay out specific obligations for all data handlers. These obligations ensure, . ### 2.3 Privacy Policy Requirements Spain's data protection law requires all data handlers to inform the data subject of the following in their privacy policy: The purpose of collecting the data and the recipients of the information The obligatory or voluntary nature of the reply to the questions put to them The consequences of obtaining the data or of refusing to provide them The possibility of exercising rights of access, rectification, erasure, portability, and objection The identity and address of the controller or their local Spanish representative ### 2.4 Security Requirements Article 9 of Spain's Data Protection Law is direct and explicit in stating the responsibility of the data handler is to take adequate measures to ensure the protection of any data collected. It mandates all data handlers to adopt technical and organisational measures necessary to ensure the security of the personal data and prevent their alteration, loss, and unauthorised processing or access. Additionally, collection of any</code> | <code>What are the requirements for organizations under the Spanish data protection law regarding privacy policies and security measures?</code> |
650
+ | <code>before the point of collection of their personal information. ## Right to Erasure The right to erasure gives consumers the right to request deleting all their data stored by the organization. Organizations are supposed to comply within 45 days and must deliver a report to the consumer confirming the deletion of their information. ## Right to Opt-in for Minors Personal information containing minors' personal information cannot be sold by a business unless the minor (age of 13 to 16 years) or the Parent/Guardian (if the minor is aged below 13 years) opt-ins to allow this sale. Businesses can be held liable for the sale of minors' personal information if they either knew or wilfully disregarded the consumer's status as a minor and the minor or Parent/Guardian had not willingly opted in. ## Right to Continued Protection Even when consumers choose to allow a business to collect and sell their personal information, businesses' must sign written</code> | <code>What are the conditions under which businesses can sell minors' personal information?</code> |
651
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
652
+ ```json
653
+ {
654
+ "loss": "MultipleNegativesRankingLoss",
655
+ "matryoshka_dims": [
656
+ 768,
657
+ 512,
658
+ 256,
659
+ 128,
660
+ 64
661
+ ],
662
+ "matryoshka_weights": [
663
+ 1,
664
+ 1,
665
+ 1,
666
+ 1,
667
+ 1
668
+ ],
669
+ "n_dims_per_step": -1
670
+ }
671
+ ```
672
+
673
+ ### Training Hyperparameters
674
+ #### Non-Default Hyperparameters
675
+
676
+ - `eval_strategy`: epoch
677
+ - `per_device_train_batch_size`: 32
678
+ - `per_device_eval_batch_size`: 16
679
+ - `learning_rate`: 2e-05
680
+ - `num_train_epochs`: 2
681
+ - `lr_scheduler_type`: cosine
682
+ - `warmup_ratio`: 0.1
683
+ - `bf16`: True
684
+ - `tf32`: True
685
+ - `load_best_model_at_end`: True
686
+ - `optim`: adamw_torch_fused
687
+ - `batch_sampler`: no_duplicates
688
+
689
+ #### All Hyperparameters
690
+ <details><summary>Click to expand</summary>
691
+
692
+ - `overwrite_output_dir`: False
693
+ - `do_predict`: False
694
+ - `eval_strategy`: epoch
695
+ - `prediction_loss_only`: True
696
+ - `per_device_train_batch_size`: 32
697
+ - `per_device_eval_batch_size`: 16
698
+ - `per_gpu_train_batch_size`: None
699
+ - `per_gpu_eval_batch_size`: None
700
+ - `gradient_accumulation_steps`: 1
701
+ - `eval_accumulation_steps`: None
702
+ - `learning_rate`: 2e-05
703
+ - `weight_decay`: 0.0
704
+ - `adam_beta1`: 0.9
705
+ - `adam_beta2`: 0.999
706
+ - `adam_epsilon`: 1e-08
707
+ - `max_grad_norm`: 1.0
708
+ - `num_train_epochs`: 2
709
+ - `max_steps`: -1
710
+ - `lr_scheduler_type`: cosine
711
+ - `lr_scheduler_kwargs`: {}
712
+ - `warmup_ratio`: 0.1
713
+ - `warmup_steps`: 0
714
+ - `log_level`: passive
715
+ - `log_level_replica`: warning
716
+ - `log_on_each_node`: True
717
+ - `logging_nan_inf_filter`: True
718
+ - `save_safetensors`: True
719
+ - `save_on_each_node`: False
720
+ - `save_only_model`: False
721
+ - `restore_callback_states_from_checkpoint`: False
722
+ - `no_cuda`: False
723
+ - `use_cpu`: False
724
+ - `use_mps_device`: False
725
+ - `seed`: 42
726
+ - `data_seed`: None
727
+ - `jit_mode_eval`: False
728
+ - `use_ipex`: False
729
+ - `bf16`: True
730
+ - `fp16`: False
731
+ - `fp16_opt_level`: O1
732
+ - `half_precision_backend`: auto
733
+ - `bf16_full_eval`: False
734
+ - `fp16_full_eval`: False
735
+ - `tf32`: True
736
+ - `local_rank`: 0
737
+ - `ddp_backend`: None
738
+ - `tpu_num_cores`: None
739
+ - `tpu_metrics_debug`: False
740
+ - `debug`: []
741
+ - `dataloader_drop_last`: False
742
+ - `dataloader_num_workers`: 0
743
+ - `dataloader_prefetch_factor`: None
744
+ - `past_index`: -1
745
+ - `disable_tqdm`: False
746
+ - `remove_unused_columns`: True
747
+ - `label_names`: None
748
+ - `load_best_model_at_end`: True
749
+ - `ignore_data_skip`: False
750
+ - `fsdp`: []
751
+ - `fsdp_min_num_params`: 0
752
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
753
+ - `fsdp_transformer_layer_cls_to_wrap`: None
754
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
755
+ - `deepspeed`: None
756
+ - `label_smoothing_factor`: 0.0
757
+ - `optim`: adamw_torch_fused
758
+ - `optim_args`: None
759
+ - `adafactor`: False
760
+ - `group_by_length`: False
761
+ - `length_column_name`: length
762
+ - `ddp_find_unused_parameters`: None
763
+ - `ddp_bucket_cap_mb`: None
764
+ - `ddp_broadcast_buffers`: False
765
+ - `dataloader_pin_memory`: True
766
+ - `dataloader_persistent_workers`: False
767
+ - `skip_memory_metrics`: True
768
+ - `use_legacy_prediction_loop`: False
769
+ - `push_to_hub`: False
770
+ - `resume_from_checkpoint`: None
771
+ - `hub_model_id`: None
772
+ - `hub_strategy`: every_save
773
+ - `hub_private_repo`: False
774
+ - `hub_always_push`: False
775
+ - `gradient_checkpointing`: False
776
+ - `gradient_checkpointing_kwargs`: None
777
+ - `include_inputs_for_metrics`: False
778
+ - `eval_do_concat_batches`: True
779
+ - `fp16_backend`: auto
780
+ - `push_to_hub_model_id`: None
781
+ - `push_to_hub_organization`: None
782
+ - `mp_parameters`:
783
+ - `auto_find_batch_size`: False
784
+ - `full_determinism`: False
785
+ - `torchdynamo`: None
786
+ - `ray_scope`: last
787
+ - `ddp_timeout`: 1800
788
+ - `torch_compile`: False
789
+ - `torch_compile_backend`: None
790
+ - `torch_compile_mode`: None
791
+ - `dispatch_batches`: None
792
+ - `split_batches`: None
793
+ - `include_tokens_per_second`: False
794
+ - `include_num_input_tokens_seen`: False
795
+ - `neftune_noise_alpha`: None
796
+ - `optim_target_modules`: None
797
+ - `batch_eval_metrics`: False
798
+ - `batch_sampler`: no_duplicates
799
+ - `multi_dataset_batch_sampler`: proportional
800
+
801
+ </details>
802
+
803
+ ### Training Logs
804
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
805
+ |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
806
+ | 0.0407 | 10 | 7.3954 | - | - | - | - | - |
807
+ | 0.0813 | 20 | 6.0944 | - | - | - | - | - |
808
+ | 0.1220 | 30 | 4.9443 | - | - | - | - | - |
809
+ | 0.1626 | 40 | 3.8606 | - | - | - | - | - |
810
+ | 0.2033 | 50 | 3.0961 | - | - | - | - | - |
811
+ | 0.2439 | 60 | 1.8788 | - | - | - | - | - |
812
+ | 0.2846 | 70 | 2.3815 | - | - | - | - | - |
813
+ | 0.3252 | 80 | 4.0698 | - | - | - | - | - |
814
+ | 0.3659 | 90 | 2.2183 | - | - | - | - | - |
815
+ | 0.4065 | 100 | 1.9142 | - | - | - | - | - |
816
+ | 0.4472 | 110 | 1.5149 | - | - | - | - | - |
817
+ | 0.4878 | 120 | 1.7036 | - | - | - | - | - |
818
+ | 0.5285 | 130 | 2.9528 | - | - | - | - | - |
819
+ | 0.5691 | 140 | 1.0596 | - | - | - | - | - |
820
+ | 0.6098 | 150 | 1.7619 | - | - | - | - | - |
821
+ | 0.6504 | 160 | 1.6529 | - | - | - | - | - |
822
+ | 0.6911 | 170 | 3.097 | - | - | - | - | - |
823
+ | 0.7317 | 180 | 1.3802 | - | - | - | - | - |
824
+ | 0.7724 | 190 | 1.9744 | - | - | - | - | - |
825
+ | 0.8130 | 200 | 5.1313 | - | - | - | - | - |
826
+ | 0.8537 | 210 | 1.405 | - | - | - | - | - |
827
+ | 0.8943 | 220 | 1.4389 | - | - | - | - | - |
828
+ | 0.9350 | 230 | 3.6439 | - | - | - | - | - |
829
+ | 0.9756 | 240 | 3.7227 | - | - | - | - | - |
830
+ | 1.0122 | 249 | - | 0.6623 | 0.7328 | 0.7549 | 0.5729 | 0.7572 |
831
+ | 1.0041 | 250 | 1.3183 | - | - | - | - | - |
832
+ | 1.0447 | 260 | 5.2631 | - | - | - | - | - |
833
+ | 1.0854 | 270 | 4.0516 | - | - | - | - | - |
834
+ | 1.1260 | 280 | 2.5487 | - | - | - | - | - |
835
+ | 1.1667 | 290 | 1.7379 | - | - | - | - | - |
836
+ | 1.2073 | 300 | 1.1724 | - | - | - | - | - |
837
+ | 1.2480 | 310 | 0.7885 | - | - | - | - | - |
838
+ | 1.2886 | 320 | 1.2341 | - | - | - | - | - |
839
+ | 1.3293 | 330 | 3.3722 | - | - | - | - | - |
840
+ | 1.3699 | 340 | 1.2227 | - | - | - | - | - |
841
+ | 1.4106 | 350 | 0.8475 | - | - | - | - | - |
842
+ | 1.4512 | 360 | 0.7605 | - | - | - | - | - |
843
+ | 1.4919 | 370 | 0.8954 | - | - | - | - | - |
844
+ | 1.5325 | 380 | 1.9712 | - | - | - | - | - |
845
+ | 1.5732 | 390 | 0.5607 | - | - | - | - | - |
846
+ | 1.6138 | 400 | 0.9671 | - | - | - | - | - |
847
+ | 1.6545 | 410 | 1.0024 | - | - | - | - | - |
848
+ | 1.6951 | 420 | 2.1374 | - | - | - | - | - |
849
+ | 1.7358 | 430 | 0.8213 | - | - | - | - | - |
850
+ | 1.7764 | 440 | 2.1253 | - | - | - | - | - |
851
+ | 1.8171 | 450 | 2.7885 | - | - | - | - | - |
852
+ | 1.8577 | 460 | 0.9053 | - | - | - | - | - |
853
+ | 1.8984 | 470 | 0.9261 | - | - | - | - | - |
854
+ | 1.9390 | 480 | 3.1218 | - | - | - | - | - |
855
+ | 1.9797 | 490 | 3.0135 | - | - | - | - | - |
856
+ | **1.9878** | **492** | **-** | **0.7047** | **0.7796** | **0.7896** | **0.6128** | **0.7968** |
857
+
858
+ * The bold row denotes the saved checkpoint.
859
+
860
+ ### Framework Versions
861
+ - Python: 3.10.14
862
+ - Sentence Transformers: 3.0.1
863
+ - Transformers: 4.41.2
864
+ - PyTorch: 2.1.2+cu121
865
+ - Accelerate: 0.31.0
866
+ - Datasets: 2.19.1
867
+ - Tokenizers: 0.19.1
868
+
869
+ ## Citation
870
+
871
+ ### BibTeX
872
+
873
+ #### Sentence Transformers
874
+ ```bibtex
875
+ @inproceedings{reimers-2019-sentence-bert,
876
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
877
+ author = "Reimers, Nils and Gurevych, Iryna",
878
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
879
+ month = "11",
880
+ year = "2019",
881
+ publisher = "Association for Computational Linguistics",
882
+ url = "https://arxiv.org/abs/1908.10084",
883
+ }
884
+ ```
885
+
886
+ #### MatryoshkaLoss
887
+ ```bibtex
888
+ @misc{kusupati2024matryoshka,
889
+ title={Matryoshka Representation Learning},
890
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
891
+ year={2024},
892
+ eprint={2205.13147},
893
+ archivePrefix={arXiv},
894
+ primaryClass={cs.LG}
895
+ }
896
+ ```
897
+
898
+ #### MultipleNegativesRankingLoss
899
+ ```bibtex
900
+ @misc{henderson2017efficient,
901
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
902
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
903
+ year={2017},
904
+ eprint={1705.00652},
905
+ archivePrefix={arXiv},
906
+ primaryClass={cs.CL}
907
+ }
908
+ ```
909
+
910
+ <!--
911
+ ## Glossary
912
+
913
+ *Clearly define terms in order to be accessible across audiences.*
914
+ -->
915
+
916
+ <!--
917
+ ## Model Card Authors
918
+
919
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
920
+ -->
921
+
922
+ <!--
923
+ ## Model Card Contact
924
+
925
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
926
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6acf0a7ac6bbd958fedee06f80a080c8d0cdbe2e9101a6a3f6ffc90457c0e573
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff