--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: transformers.js license: apache-2.0 --- https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` You can then use the model to compute embeddings like this: ```js import { pipeline } from '@huggingface/transformers'; // Create a feature-extraction pipeline const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'); // Compute sentence embeddings const sentences = ['This is an example sentence', 'Each sentence is converted']; const output = await extractor(sentences, { pooling: 'mean', normalize: true }); console.log(output); // Tensor { // dims: [ 2, 384 ], // type: 'float32', // data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ], // size: 768 // } ``` You can convert this Tensor to a nested JavaScript array using `.tolist()`: ```js console.log(output.tolist()); // [ // [ 0.04592696577310562, 0.07328180968761444, 0.05400655046105385, ... ], // [ 0.08188057690858841, 0.10760223120450974, -0.013241755776107311, ... ] // ] ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).