MostafaAhmed98 commited on
Commit
359d07b
·
verified ·
1 Parent(s): 666c26a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -72,7 +72,7 @@ The model was trained using the Hugging Face `transformers` library. The trainin
72
 
73
  ## Evaluation Results
74
 
75
- The model was evaluated on a held-out test set from the CoNLL++-NER-AR dataset. Here are the key performance metrics:
76
 
77
  - **Precision:** 0.8547
78
  - **Recall:** 0.8633
@@ -89,8 +89,8 @@ You can load and use the model with the Hugging Face `transformers` library as f
89
  from transformers import AutoTokenizer, AutoModelForTokenClassification
90
  from transformers import pipeline
91
 
92
- tokenizer = AutoTokenizer.from_pretrained("your-username/AraBERT-NER")
93
- model = AutoModelForTokenClassification.from_pretrained("your-username/AraBERT-NER")
94
 
95
  # Create a NER pipeline
96
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
 
72
 
73
  ## Evaluation Results
74
 
75
+ The model was evaluated on a held-out test set from the CoNLL-NER-AR dataset. Here are the key performance metrics:
76
 
77
  - **Precision:** 0.8547
78
  - **Recall:** 0.8633
 
89
  from transformers import AutoTokenizer, AutoModelForTokenClassification
90
  from transformers import pipeline
91
 
92
+ tokenizer = AutoTokenizer.from_pretrained("MostafaAhmed98/AraBert-Arabic-NER-CoNLLpp")
93
+ model = AutoModelForTokenClassification.from_pretrained("MostafaAhmed98/AraBert-Arabic-NER-CoNLLpp")
94
 
95
  # Create a NER pipeline
96
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)