MostafaAhmed98
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -72,7 +72,7 @@ The model was trained using the Hugging Face `transformers` library. The trainin
|
|
72 |
|
73 |
## Evaluation Results
|
74 |
|
75 |
-
The model was evaluated on a held-out test set from the CoNLL
|
76 |
|
77 |
- **Precision:** 0.8547
|
78 |
- **Recall:** 0.8633
|
@@ -89,8 +89,8 @@ You can load and use the model with the Hugging Face `transformers` library as f
|
|
89 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
90 |
from transformers import pipeline
|
91 |
|
92 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
93 |
-
model = AutoModelForTokenClassification.from_pretrained("
|
94 |
|
95 |
# Create a NER pipeline
|
96 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
|
72 |
|
73 |
## Evaluation Results
|
74 |
|
75 |
+
The model was evaluated on a held-out test set from the CoNLL-NER-AR dataset. Here are the key performance metrics:
|
76 |
|
77 |
- **Precision:** 0.8547
|
78 |
- **Recall:** 0.8633
|
|
|
89 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
90 |
from transformers import pipeline
|
91 |
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("MostafaAhmed98/AraBert-Arabic-NER-CoNLLpp")
|
93 |
+
model = AutoModelForTokenClassification.from_pretrained("MostafaAhmed98/AraBert-Arabic-NER-CoNLLpp")
|
94 |
|
95 |
# Create a NER pipeline
|
96 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|