MoritzLaurer HF staff commited on
Commit
ca6ec93
·
verified ·
1 Parent(s): 7b0b08c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -41
README.md CHANGED
@@ -7,42 +7,39 @@ tags:
7
  metrics:
8
  - accuracy
9
  model-index:
10
- - name: ModernBERT-base-zeroshot-v2.0-2024-12-28-09-01
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # ModernBERT-base-zeroshot-v2.0-2024-12-28-09-01
18
-
19
- This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.1856
22
- - F1 Macro: 0.6373
23
- - F1 Micro: 0.7076
24
- - Accuracy Balanced: 0.6761
25
- - Accuracy: 0.7076
26
- - Precision Macro: 0.6700
27
- - Recall Macro: 0.6761
28
- - Precision Micro: 0.7076
29
- - Recall Micro: 0.7076
30
 
31
  ## Model description
32
 
33
- More information needed
 
 
34
 
35
- ## Intended uses & limitations
 
 
 
 
 
36
 
37
- More information needed
38
 
39
- ## Training and evaluation data
40
 
41
- More information needed
 
 
 
 
 
 
42
 
43
- ## Training procedure
44
 
45
- ### Training hyperparameters
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 5e-05
@@ -54,25 +51,8 @@ The following hyperparameters were used during training:
54
  - lr_scheduler_warmup_ratio: 0.06
55
  - num_epochs: 2
56
 
57
- ### Training results
58
-
59
- | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
60
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
61
- | 0.2321 | 1.0 | 33915 | 0.3726 | 0.8316 | 0.8458 | 0.8332 | 0.8458 | 0.8301 | 0.8332 | 0.8458 | 0.8458 |
62
- | 0.1305 | 2.0 | 67830 | 0.4350 | 0.8396 | 0.8541 | 0.8389 | 0.8541 | 0.8403 | 0.8389 | 0.8541 | 0.8541 |
63
-
64
-
65
- Per-dataset breakdown:
66
-
67
- |Datasets|Mean|Mean w/o NLI|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
68
- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
69
- |Accuracy|0.831|0.835|0.932|0.936|0.884|0.763|0.647|0.657|0.823|0.889|0.753|0.864|0.949|0.935|0.974|0.798|0.788|0.727|0.789|0.793|0.489|0.893|0.717|0.927|0.851|0.859|0.907|0.952|0.926|0.726|0.978|0.912|0.914|0.93|0.951|0.906|0.476|0.708|
70
- |F1 macro|0.813|0.818|0.925|0.93|0.872|0.74|0.61|0.611|0.81|0.874|0.751|0.864|0.949|0.935|0.974|0.751|0.738|0.746|0.733|0.798|0.475|0.893|0.712|0.919|0.851|0.859|0.892|0.952|0.847|0.721|0.966|0.912|0.914|0.93|0.942|0.906|0.329|0.637|
71
- |Inference text/sec (GPU, batch=128)|3472.0|3474.0|2338.0|4416.0|2993.0|2959.0|2904.0|3003.0|4647.0|4486.0|5032.0|4354.0|2466.0|1140.0|1582.0|4392.0|5446.0|5296.0|4904.0|4787.0|2251.0|4042.0|1884.0|4048.0|4032.0|4121.0|4275.0|3746.0|4485.0|1114.0|4322.0|2260.0|2274.0|2189.0|2085.0|2410.0|3933.0|4388.0|
72
-
73
-
74
 
75
- ### Framework versions
76
 
77
  - Transformers 4.48.0.dev0
78
  - Pytorch 2.5.1+cu124
 
7
  metrics:
8
  - accuracy
9
  model-index:
10
+ - name: ModernBERT-base-zeroshot-v2.0
11
  results: []
12
  ---
13
 
 
 
14
 
15
+ # ModernBERT-base-zeroshot-v2.0
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Model description
18
 
19
+ This model is [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
20
+ fine-tuned on the same dataset mix as the `zeroshot-v2.0` models in the [Zeroshot Classifiers Collection](https://huggingface.co/collections/MoritzLaurer/zeroshot-classifiers-6548b4ff407bb19ff5c3ad6f).
21
+
22
 
23
+ ## General takeaways:
24
+ - The model is very fast and memory efficient. It's multiple times faster and consumes multiple times less memory than DeBERTav3.
25
+ The memory efficiency enables larger batch sizes. I got a ~2x speed increase by enabling bf16 (instead of fp16).
26
+ - It performs slightly worse then DeBERTav3 on average on the tasks tested below.
27
+ - I'm in the process of preparing a newer version trained on better synthetic data to make full use of the 8k context window
28
+ and to update the training mix of the older `zeroshot-v2.0` models.
29
 
 
30
 
31
+ ## Training results
32
 
33
+ Per-dataset breakdown:
34
+
35
+ |Datasets|Mean|Mean w/o NLI|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
36
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
37
+ |Accuracy|0.831|0.835|0.932|0.936|0.884|0.763|0.647|0.657|0.823|0.889|0.753|0.864|0.949|0.935|0.974|0.798|0.788|0.727|0.789|0.793|0.489|0.893|0.717|0.927|0.851|0.859|0.907|0.952|0.926|0.726|0.978|0.912|0.914|0.93|0.951|0.906|0.476|0.708|
38
+ |F1 macro|0.813|0.818|0.925|0.93|0.872|0.74|0.61|0.611|0.81|0.874|0.751|0.864|0.949|0.935|0.974|0.751|0.738|0.746|0.733|0.798|0.475|0.893|0.712|0.919|0.851|0.859|0.892|0.952|0.847|0.721|0.966|0.912|0.914|0.93|0.942|0.906|0.329|0.637|
39
+ |Inference text/sec (A100 40GB GPU, batch=128)|3472.0|3474.0|2338.0|4416.0|2993.0|2959.0|2904.0|3003.0|4647.0|4486.0|5032.0|4354.0|2466.0|1140.0|1582.0|4392.0|5446.0|5296.0|4904.0|4787.0|2251.0|4042.0|1884.0|4048.0|4032.0|4121.0|4275.0|3746.0|4485.0|1114.0|4322.0|2260.0|2274.0|2189.0|2085.0|2410.0|3933.0|4388.0|
40
 
 
41
 
42
+ ## Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 5e-05
 
51
  - lr_scheduler_warmup_ratio: 0.06
52
  - num_epochs: 2
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ ## Framework versions
56
 
57
  - Transformers 4.48.0.dev0
58
  - Pytorch 2.5.1+cu124