--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-ISIC-dec2024 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9380236925744004 --- # vit-base-patch16-224-finetuned-ISIC-dec2024 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1523 - Accuracy: 0.9380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 | | 0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 | | 0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 | ### Testing results Testing data confusion values: (Malignant -> Positive, Benign -> Negative) | |Predict Positive|Predict Negative| |:-------------:|:--------------:|:--------------:| |Actual Positive|1301 |792 | |Actual Negative|301 |14912 | - Precision: 0.812 - Recall: 0.622 - Accuracy: 0.937 - F1: 0.704 ### Framework versions - Transformers 4.47.1 - Pytorch 2.6.0.dev20241225+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0