File size: 2,176 Bytes
d36f5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-lora-text-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9904
- Accuracy: {'accuracy': 0.899}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy            |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log        | 1.0   | 250  | 0.5709          | {'accuracy': 0.837} |
| 0.4386        | 2.0   | 500  | 0.4510          | {'accuracy': 0.871} |
| 0.4386        | 3.0   | 750  | 0.6571          | {'accuracy': 0.887} |
| 0.1891        | 4.0   | 1000 | 0.6197          | {'accuracy': 0.894} |
| 0.1891        | 5.0   | 1250 | 0.7688          | {'accuracy': 0.897} |
| 0.0683        | 6.0   | 1500 | 0.8231          | {'accuracy': 0.892} |
| 0.0683        | 7.0   | 1750 | 0.8949          | {'accuracy': 0.901} |
| 0.0136        | 8.0   | 2000 | 0.9553          | {'accuracy': 0.896} |
| 0.0136        | 9.0   | 2250 | 1.0202          | {'accuracy': 0.892} |
| 0.0067        | 10.0  | 2500 | 0.9904          | {'accuracy': 0.899} |


### Framework versions

- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.15.2