Upload 3 files
Browse files- THE_BERT_MODEL.ipynb +0 -0
- app (1).py +27 -0
- requirements (1).txt +3 -0
THE_BERT_MODEL.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app (1).py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers as pipeline
|
3 |
+
from transformers import AutoTokenizer,AutoModelForSequenceClassification
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
5 |
+
|
6 |
+
model_name = "Sonny4Sonnix/twitter-roberta-base-sentimental-analysis-of-covid-tweets" # Replace with the name of the pre-trained model you want to use
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
def get_sentiment(input_text):
|
13 |
+
return sentiment(input_text)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
#Function to predict sentiments from the input text using the model
|
18 |
+
prediction = model.predict([text])[0]
|
19 |
+
if label==-1:
|
20 |
+
return "Negative"
|
21 |
+
elif label== 0:
|
22 |
+
return "Neutral"
|
23 |
+
else:
|
24 |
+
return "Positive"
|
25 |
+
|
26 |
+
iface = gr.Interface(fn=get_sentiment,title="Sentimental Analysis", inputs="text",outputs="text")
|
27 |
+
iface.launch(inline=True)
|
requirements (1).txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
torch
|