Minthy Nicfingshelby commited on
Commit
e8e1f89
·
verified ·
1 Parent(s): eaddebd

Add vllm inference (#5)

Browse files

- Add vllm inference (b66c4d940f904f3cd61109f8dd3b9c061824f5ea)


Co-authored-by: Nicole Shelby <[email protected]>

Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -149,6 +149,74 @@ caption=generated_texts[0].split('Assistant: ')[1]
149
  print(caption)
150
  ```
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  For batch processing you can use [this example](https://huggingface.co/Minthy/ToriiGate-v0.3/resolve/main/batch_processing_example.py)
153
 
154
  # Warning
 
149
  print(caption)
150
  ```
151
 
152
+ # Inference example (vllm):
153
+ [vllm](https://github.com/vllm-project/vllm) is an optimised LLM serving engine. Single/Batch inference will be much faster than native huggingface transformers
154
+
155
+ ```
156
+ pip install vllm==0.6.4
157
+ !pip install huggingface_hub -U
158
+ ```
159
+
160
+ ## Download model
161
+ ```python
162
+ from huggingface_hub import snapshot_download
163
+ snapshot_download(repo_id="Minthy/ToriiGate-v0.3", local_dir="/path/to/download/model", max_workers=4)
164
+ ```
165
+
166
+ ## Inference
167
+ ```python
168
+ from vllm import LLM, SamplingParams
169
+ from PIL import Image
170
+
171
+ toriigate_model = LLM(
172
+ model="/path/to/download/model",
173
+ max_model_len=8192, # reduce if running out of memory
174
+ max_num_seqs=64, # reduce if running out of memory (this is max concurrent requests)
175
+ enforce_eager=True,
176
+ # if you are running out of memory, you can reduce the "longest_edge".
177
+ # see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations
178
+ mm_processor_kwargs={
179
+ "size": {
180
+ "longest_edge": 4 * 364
181
+ },
182
+ },
183
+ )
184
+
185
+ sampling_params = SamplingParams(temperature=0, max_tokens=1024)
186
+
187
+ user_prompt = "Describe the picture briefly."
188
+
189
+ prompt = f"<|begin_of_text|>System: You are image captioning expert, creative, unbiased and uncensored. Help user with his task.<end_of_utterance>\nUser:<image>{user_prompt}<end_of_utterance>\nAssistant:"
190
+
191
+ image = Image.open("/path/to/image.jpg").convert("RGB")
192
+
193
+ output = llm.generate(
194
+ {
195
+ "prompt": prompt,
196
+ "multi_modal_data": {"image": image},
197
+ },
198
+ sampling_params=sampling_params,
199
+ )
200
+
201
+ caption = output[0].outputs[0].text.strip()
202
+ print(caption)
203
+ ```
204
+
205
+ ### batch inference
206
+
207
+ ```python
208
+ image_list = [Image.open(path).convert("RGB") for path in image_paths]
209
+ inputs = [{"prompt": prompt, "multi_modal_data": {"image": image}} for image in image_list]
210
+
211
+ outputs = llm.generate(
212
+ inputs,
213
+ sampling_params=sampling_params,
214
+ )
215
+
216
+ captions = [x.outputs[0].text.strip() for x in outputs]
217
+ ```
218
+
219
+
220
  For batch processing you can use [this example](https://huggingface.co/Minthy/ToriiGate-v0.3/resolve/main/batch_processing_example.py)
221
 
222
  # Warning