--- license: apache-2.0 datasets: - databricks/databricks-dolly-15k language: - en metrics: - rouge base_model: - openai-community/gpt2-medium pipeline_tag: text-generation --- # MiniLLM-gpt2-340M [paper](https://arxiv.org/abs/2306.08543) | [code](https://github.com/microsoft/LMOps/tree/main/minillm) **MiniLLM-gpt2-340M** is a gpt2-medium (340M) model distilled from [gpt2-xlarge (1.5B)](https://huggingface.co/MiniLLM/teacher-gpt2-1.5B) on [databricks-dolly-15k](https://huggingface.co/datasets/aisquared/databricks-dolly-15k)
**Note**: MiniLLM requires a [SFT model](https://huggingface.co/MiniLLM/init-gpt2-340M) for initilization to perform the PPO optimization. ## Evaluation We ask GPT-4 to give scores for the generated responses of MiniLLM. The prompts are taken from [databricks-dolly-15k](https://huggingface.co/datasets/aisquared/databricks-dolly-15k) (test set), [self-instruct](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json), and [vicuna](https://github.com/lm-sys/vicuna-blog-eval)
## Baseline Models + [SFT w/o KD](https://huggingface.co/MiniLLM/SFT-gpt2-340M) + [KD](https://huggingface.co/MiniLLM/KD-gpt2-340M) + [SeqKD](https://huggingface.co/MiniLLM/SeqKD-gpt2-340M) ## Citation ``` @inproceedings{minillm, title={MiniLLM: Knowledge Distillation of Large Language Models}, author={Gu, Yuxian and Dong, Li and Wei, Furu and Huang, Minlie}, booktitle={Proceedings of ICLR}, year={2024} } ```