--- license: apache-2.0 datasets: - Minami-su/Amara-o2-dataset ---
Model Illustration
“何が綴られていたのか、私たちの文明では到底理解できない”
(所阐述的内容超出了我们文明的理解范围)
— sasakure.UK
# How to use 迭代基于Amara-o1-7B-Qwen ```python # Use a pipeline as a high-level helper from transformers import pipeline messages = [ {"role": "user", "content": "Who are you?"}, ] pipe = pipeline("text-generation", model="Minami-su/Amara-o2-7B-Qwen") pipe(messages) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Minami-su/Amara-o2-7B-Qwen") model = AutoModelForCausalLM.from_pretrained("Minami-su/Amara-o2-7B-Qwen") ``` #### Open Ended Generation Evaluation
| Model | Arena-Hard | AlpacaEval 2.0 | |-------|------------|----------------| | DeepSeek-V2.5-0905 | 76.2 | 50.5 | | Qwen2.5-72B-Instruct | 81.2 | 49.1 | | LLaMA-3.1 405B | 69.3 | 40.5 | | Amara-o1-7B-Qwen | ? | 42.12 | | **Amara-o2-7B-Qwen** | ? | **51.33** | | GPT-4o-0513 | 80.4 | 51.1 | | Claude-Sonnet-3.5-1022 | 85.2 | 52.0 | | DeepSeek-V3 | **85.5** | **70.0** | Note: English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric.