MeghanaNanuvala commited on
Commit
db49988
·
verified ·
1 Parent(s): c3a3a3f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.35 +/- 25.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f93ecd5ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f93ecd5f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f93ecd5fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f93ecd6050>", "_build": "<function ActorCriticPolicy._build at 0x78f93ecd60e0>", "forward": "<function ActorCriticPolicy.forward at 0x78f93ecd6170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f93ecd6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f93ecd6290>", "_predict": "<function ActorCriticPolicy._predict at 0x78f93ecd6320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f93ecd63b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f93ecd6440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f93ecd64d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f93ec82880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728937356847672342, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPS4b29Sm0/l+YNvoGo5L6dSJm9mx2RPAAAAAAAAAAAmCqNvpDzHD+jE1+9e5ykvqPVVr6dUnC7AAAAAAAAAAC+vIO+8AWkPyISE7/5DgW/VHK9vTUsNr4AAAAAAAAAAKYZUT4b48K8l2mwO2T8JrqH8S6+zIABuwAAgD8AAIA/ADSaPgXIED8/uUu+yQeavstZaT12L7G9AAAAAAAAAACzgoq+3RWAP3oQ5b5ng/G+RSdyvn6zsL0AAAAAAAAAAKD9Sb7nhDc+06WRPmHlSL4/mcq8fB+YOwAAAAAAAAAAM1HKvEjLkbrJz0I7jrohuMz/77mqtIO5AACAPwAAgD/NFq68w4FlutKviT0/5Vo2LI9YOx5nUDUAAAAAAACAPybTyD2u4YC6Wy+POASFODRvBzk65Q6ktwAAgD8AAAAAsz66Pd1JTj97vHU8YYarvrO5BT0sLcS8AAAAAAAAAAAzLjQ9SIuAul6bh7s+W5+2Q18AOttvnjoAAIA/AACAP1qMo70UsvI+UfYKvDZyk77xSLS9Y6v5OwAAAAAAAAAArYQYvgXtFD+TV5U8wX+ivsOatr0s5x49AAAAAAAAAABz6bA9PXo0uWJidToDlb08RcCJug4I5zkAAAAAAAAAAM0Fjj0NSII/ktivPcNsu75JJtA9n6kBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8+utwJgLKMAWyUTUABjAF0lEdAo66azw+dLHV9lChoBkdAcNBmV7hNumgHTXgCaAhHQKOwAB19v0h1fZQoaAZHQHJ8hLwnYxtoB01mA2gIR0CjsKRtP558dX2UKGgGR0Bv1zAzpHI7aAdN0AJoCEdAo7Dc9ECvHXV9lChoBkdAbh0ZbY9PlGgHTWACaAhHQKOyCuM+/xl1fZQoaAZHQHHMG/nGKhtoB00nAmgIR0CjswvUjLSvdX2UKGgGR0By559fCyhSaAdNjwJoCEdAo7QBDgIhQnV9lChoBkdAcZvP2f02+GgHTUMBaAhHQKO1YZXuE251fZQoaAZHQHGv/ZuhsZZoB01LAWgIR0Cjtr3iBGx2dX2UKGgGR0BxNFEnb7CSaAdNNAFoCEdAo7clw3o9tHV9lChoBkdAZdaXrt3OfWgHTegDaAhHQKO3Wg2ZRbd1fZQoaAZHQHEz2uoxYaJoB01NAmgIR0CjwD5cTrVwdX2UKGgGR0BmEyDVYp2EaAdN6ANoCEdAo8CqXMQmNXV9lChoBkdAYOCSFoL5RGgHTegDaAhHQKPA2jfvWpZ1fZQoaAZHQGS90d7v5QBoB03oA2gIR0CjwN7x3FDOdX2UKGgGR0ByRMKtxMnJaAdN/gJoCEdAo8EVo+Ofd3V9lChoBkdAbczKcNH6M2gHTbkBaAhHQKPBnN3W4Ex1fZQoaAZHQHF+m5c1O0toB017AWgIR0CjwbewcHW0dX2UKGgGR0Bnrmgi/wiJaAdN6ANoCEdAo8HN63RXwXV9lChoBkdAYnI3eenQ6mgHTegDaAhHQKPCOWoFV1h1fZQoaAZHQHDwdUsFt9BoB02CA2gIR0Cjw5qvNeMRdX2UKGgGR0A9EtthuwX7aAdLx2gIR0CjxLosZpBYdX2UKGgGR0BRdPA44p+daAdLumgIR0CjxWy7f51vdX2UKGgGR0BwvISpR4yHaAdNkQFoCEdAo8WHKMefZnV9lChoBkdAcfVDGcWj5GgHTUsBaAhHQKPF0UliSaF1fZQoaAZHQHJ/uA/cFhZoB00MAWgIR0CjxiJ0OmSAdX2UKGgGR0BylqHM2WIHaAdNHQFoCEdAo8kLTnaFmHV9lChoBkdAckdGlyimEWgHTZ4BaAhHQKPJPUZvUBp1fZQoaAZHQHMUXSF49oxoB01hAWgIR0Cjydg5R0lrdX2UKGgGR0ByRPf642CNaAdN6AFoCEdAo8oKfnOjZnV9lChoBkdAb9ovkBCD3GgHTcwBaAhHQKPKk7J4jbB1fZQoaAZHQG9l42Kl54ZoB01DAWgIR0Cjy2XNC7btdX2UKGgGR0BBtL61stTUaAdL8mgIR0Cjy392HLzPdX2UKGgGR0BQMszuWrwOaAdL7WgIR0Cjy6NiQT24dX2UKGgGR0Bwp+bb1yvLaAdN4AJoCEdAo8vCrcTJyXV9lChoBkdAcY5qwyIpIGgHTSABaAhHQKPMCJ0nw5N1fZQoaAZHQHEnDSgGr0doB01eAWgIR0CjzKLxAjY7dX2UKGgGR0BusTmMfigkaAdNUgJoCEdAo807Trmhd3V9lChoBkdAb6DW7OE/S2gHTdICaAhHQKPNxx8UmD11fZQoaAZHQHLrAPd2xIJoB01RAmgIR0Cjzfk6cRUWdX2UKGgGR0Bw/FGax5cDaAdN0QNoCEdAo88S8Yht+HV9lChoBkdAP9mP5pJwsGgHS9loCEdAo88vC/GlynV9lChoBkdAPL/XGwRoRWgHS9doCEdAo88+FvhqCnV9lChoBkdAcHWh3JPqLWgHTTYBaAhHQKPPlXxOLzh1fZQoaAZHQHG+Cbx3FDRoB01vAWgIR0Cjz9hnanJldX2UKGgGR0Bx6VsANoalaAdNEAFoCEdAo9BLlkpZwHV9lChoBkdAK0GDL8rI52gHS69oCEdAo9C4nWrfcnV9lChoBkdAcpXrO7g882gHTTwBaAhHQKPRKDDjzZp1fZQoaAZHQEbPog3cYZVoB0vQaAhHQKPS2a+evp11fZQoaAZHQHGF7rX18LNoB03lAWgIR0Cj0ysHjZL7dX2UKGgGR0ByViZ4Oc2BaAdNkwFoCEdAo9wT3Gn4wnV9lChoBkdAcBSla8pTdmgHS+5oCEdAo9x9YISlFnV9lChoBkdAcktqxkd3jmgHTUkCaAhHQKPcs1qnFYN1fZQoaAZHQHG2tQ0oBq9oB00vAWgIR0Cj3Np9iMHbdX2UKGgGR0BynCbsniNsaAdNbwFoCEdAo9zfDziCKHV9lChoBkdAcDNVurIYFmgHTQIDaAhHQKPc/F+d9Ul1fZQoaAZHQG0NNZV4oqloB03pAWgIR0Cj3QfnwG4adX2UKGgGR0BvkEnogV45aAdNtAFoCEdAo91GGqPwNXV9lChoBkdAcUqR6Ww/xGgHTU4BaAhHQKPdg4XGff51fZQoaAZHQHF0Zb6guh9oB01bAWgIR0Cj3jW3KB/adX2UKGgGR0BzK2zXz19OaAdNTgFoCEdAo97LOTq0MXV9lChoBkdAcMh8c+7lJmgHTScBaAhHQKPfBI1+AmR1fZQoaAZHQGy8Hi3ocJdoB0v5aAhHQKPhGKjzqbB1fZQoaAZHQG8hw5FPSD1oB02hAWgIR0Cj4TszuWrwdX2UKGgGR0AREWAPNFBqaAdL12gIR0Cj4YKJ2t+1dX2UKGgGR0Bx6ED/2kBTaAdNOwFoCEdAo+IMX531SXV9lChoBkdAcAIwDNhVl2gHTQ4BaAhHQKPimRujynV1fZQoaAZHQHA2Dt5UtI1oB02YA2gIR0Cj4u5xzaK2dX2UKGgGR0BwtlDBuXNUaAdNNgFoCEdAo+Mo68xsVXV9lChoBkdASH+so2GZeGgHS8ZoCEdAo+MudVea8nV9lChoBkdAcRsdHDrJKmgHTS4BaAhHQKPjLmXgLql1fZQoaAZHQHGD2jXWe6JoB01hAWgIR0Cj46O0kWykdX2UKGgGR0Bwu9AgPmPpaAdNQQFoCEdAo+PS44Ia+HV9lChoBkdAcCc0PH1e0GgHTSIBaAhHQKPkvSqlxfh1fZQoaAZHQHAKSxqwhW5oB01RAWgIR0Cj5M1P3ztkdX2UKGgGR0BLNU7Sy+pPaAdLzGgIR0Cj5QgnlXA/dX2UKGgGR0Bv/0WKuSwGaAdNWAFoCEdAo+cX3UQTVXV9lChoBkdAb09P69CeE2gHTSoCaAhHQKPnTgJkXk51fZQoaAZHQEHIOhCdBjZoB0vcaAhHQKPnUqCpWFN1fZQoaAZHQHKBUihWYF9oB00WAWgIR0Cj54nnuAqedX2UKGgGR0Bxc1N5+pfhaAdNfQFoCEdAo+fLEHdGiHV9lChoBkdAbxkLsKLKm2gHTbECaAhHQKPn688s+V11fZQoaAZHQHLRoRqXWvtoB02LAWgIR0Cj6PH+Q2dedX2UKGgGR0BwozApKBd2aAdNgAFoCEdAo+kWmR/3FnV9lChoBkdAbuPKNhmXgWgHTQkBaAhHQKPpYs8xKxt1fZQoaAZHQHKYVbmlqJxoB01pAWgIR0Cj6Wynk1dgdX2UKGgGR0BsjmRV6u4gaAdNpAJoCEdAo+mwoPTXrnV9lChoBkdAQWZL9MsYmGgHS79oCEdAo+oq6OHWSXV9lChoBkdAcgk+PRzBAWgHTfYBaAhHQKPqMhhYvFp1fZQoaAZHQHH3oJqqOtJoB01YAWgIR0Cj6lONPxhEdX2UKGgGR0BvE6IznA6/aAdNAgFoCEdAo+thXEIgNnV9lChoBkdAcIqEVWS2Y2gHTSICaAhHQKPr0L5ylvZ1fZQoaAZHQHCQdDIBBAxoB00iAWgIR0Cj6+o7muDBdX2UKGgGR0Bx964G2TgVaAdNLwFoCEdAo+ye2sq8UXV9lChoBkdAb1FvKlpGnWgHTesBaAhHQKPsnxy4nWt1fZQoaAZHQDcccJdB0IVoB0vSaAhHQKPssC2c8T11fZQoaAZHQHH2DrAxi5NoB01LAWgIR0Cj7SuearmydX2UKGgGR0BHJX9itq59aAdL3mgIR0Cj7S5Sm65HdX2UKGgGR0BOicWbgCOnaAdLw2gIR0Cj7T43WFvidX2UKGgGR0BugZbILgGbaAdNaQFoCEdAo+1DzshPkHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943598da69f641c578c202e356c9f596055392055b1e40071f28e8757984bbf7
3
+ size 148064
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78f93ecd5ea0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f93ecd5f30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f93ecd5fc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f93ecd6050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78f93ecd60e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78f93ecd6170>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f93ecd6200>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f93ecd6290>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78f93ecd6320>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f93ecd63b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f93ecd6440>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f93ecd64d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78f93ec82880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1728937356847672342,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPS4b29Sm0/l+YNvoGo5L6dSJm9mx2RPAAAAAAAAAAAmCqNvpDzHD+jE1+9e5ykvqPVVr6dUnC7AAAAAAAAAAC+vIO+8AWkPyISE7/5DgW/VHK9vTUsNr4AAAAAAAAAAKYZUT4b48K8l2mwO2T8JrqH8S6+zIABuwAAgD8AAIA/ADSaPgXIED8/uUu+yQeavstZaT12L7G9AAAAAAAAAACzgoq+3RWAP3oQ5b5ng/G+RSdyvn6zsL0AAAAAAAAAAKD9Sb7nhDc+06WRPmHlSL4/mcq8fB+YOwAAAAAAAAAAM1HKvEjLkbrJz0I7jrohuMz/77mqtIO5AACAPwAAgD/NFq68w4FlutKviT0/5Vo2LI9YOx5nUDUAAAAAAACAPybTyD2u4YC6Wy+POASFODRvBzk65Q6ktwAAgD8AAAAAsz66Pd1JTj97vHU8YYarvrO5BT0sLcS8AAAAAAAAAAAzLjQ9SIuAul6bh7s+W5+2Q18AOttvnjoAAIA/AACAP1qMo70UsvI+UfYKvDZyk77xSLS9Y6v5OwAAAAAAAAAArYQYvgXtFD+TV5U8wX+ivsOatr0s5x49AAAAAAAAAABz6bA9PXo0uWJidToDlb08RcCJug4I5zkAAAAAAAAAAM0Fjj0NSII/ktivPcNsu75JJtA9n6kBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8+utwJgLKMAWyUTUABjAF0lEdAo66azw+dLHV9lChoBkdAcNBmV7hNumgHTXgCaAhHQKOwAB19v0h1fZQoaAZHQHJ8hLwnYxtoB01mA2gIR0CjsKRtP558dX2UKGgGR0Bv1zAzpHI7aAdN0AJoCEdAo7Dc9ECvHXV9lChoBkdAbh0ZbY9PlGgHTWACaAhHQKOyCuM+/xl1fZQoaAZHQHHMG/nGKhtoB00nAmgIR0CjswvUjLSvdX2UKGgGR0By559fCyhSaAdNjwJoCEdAo7QBDgIhQnV9lChoBkdAcZvP2f02+GgHTUMBaAhHQKO1YZXuE251fZQoaAZHQHGv/ZuhsZZoB01LAWgIR0Cjtr3iBGx2dX2UKGgGR0BxNFEnb7CSaAdNNAFoCEdAo7clw3o9tHV9lChoBkdAZdaXrt3OfWgHTegDaAhHQKO3Wg2ZRbd1fZQoaAZHQHEz2uoxYaJoB01NAmgIR0CjwD5cTrVwdX2UKGgGR0BmEyDVYp2EaAdN6ANoCEdAo8CqXMQmNXV9lChoBkdAYOCSFoL5RGgHTegDaAhHQKPA2jfvWpZ1fZQoaAZHQGS90d7v5QBoB03oA2gIR0CjwN7x3FDOdX2UKGgGR0ByRMKtxMnJaAdN/gJoCEdAo8EVo+Ofd3V9lChoBkdAbczKcNH6M2gHTbkBaAhHQKPBnN3W4Ex1fZQoaAZHQHF+m5c1O0toB017AWgIR0CjwbewcHW0dX2UKGgGR0Bnrmgi/wiJaAdN6ANoCEdAo8HN63RXwXV9lChoBkdAYnI3eenQ6mgHTegDaAhHQKPCOWoFV1h1fZQoaAZHQHDwdUsFt9BoB02CA2gIR0Cjw5qvNeMRdX2UKGgGR0A9EtthuwX7aAdLx2gIR0CjxLosZpBYdX2UKGgGR0BRdPA44p+daAdLumgIR0CjxWy7f51vdX2UKGgGR0BwvISpR4yHaAdNkQFoCEdAo8WHKMefZnV9lChoBkdAcfVDGcWj5GgHTUsBaAhHQKPF0UliSaF1fZQoaAZHQHJ/uA/cFhZoB00MAWgIR0CjxiJ0OmSAdX2UKGgGR0BylqHM2WIHaAdNHQFoCEdAo8kLTnaFmHV9lChoBkdAckdGlyimEWgHTZ4BaAhHQKPJPUZvUBp1fZQoaAZHQHMUXSF49oxoB01hAWgIR0Cjydg5R0lrdX2UKGgGR0ByRPf642CNaAdN6AFoCEdAo8oKfnOjZnV9lChoBkdAb9ovkBCD3GgHTcwBaAhHQKPKk7J4jbB1fZQoaAZHQG9l42Kl54ZoB01DAWgIR0Cjy2XNC7btdX2UKGgGR0BBtL61stTUaAdL8mgIR0Cjy392HLzPdX2UKGgGR0BQMszuWrwOaAdL7WgIR0Cjy6NiQT24dX2UKGgGR0Bwp+bb1yvLaAdN4AJoCEdAo8vCrcTJyXV9lChoBkdAcY5qwyIpIGgHTSABaAhHQKPMCJ0nw5N1fZQoaAZHQHEnDSgGr0doB01eAWgIR0CjzKLxAjY7dX2UKGgGR0BusTmMfigkaAdNUgJoCEdAo807Trmhd3V9lChoBkdAb6DW7OE/S2gHTdICaAhHQKPNxx8UmD11fZQoaAZHQHLrAPd2xIJoB01RAmgIR0Cjzfk6cRUWdX2UKGgGR0Bw/FGax5cDaAdN0QNoCEdAo88S8Yht+HV9lChoBkdAP9mP5pJwsGgHS9loCEdAo88vC/GlynV9lChoBkdAPL/XGwRoRWgHS9doCEdAo88+FvhqCnV9lChoBkdAcHWh3JPqLWgHTTYBaAhHQKPPlXxOLzh1fZQoaAZHQHG+Cbx3FDRoB01vAWgIR0Cjz9hnanJldX2UKGgGR0Bx6VsANoalaAdNEAFoCEdAo9BLlkpZwHV9lChoBkdAK0GDL8rI52gHS69oCEdAo9C4nWrfcnV9lChoBkdAcpXrO7g882gHTTwBaAhHQKPRKDDjzZp1fZQoaAZHQEbPog3cYZVoB0vQaAhHQKPS2a+evp11fZQoaAZHQHGF7rX18LNoB03lAWgIR0Cj0ysHjZL7dX2UKGgGR0ByViZ4Oc2BaAdNkwFoCEdAo9wT3Gn4wnV9lChoBkdAcBSla8pTdmgHS+5oCEdAo9x9YISlFnV9lChoBkdAcktqxkd3jmgHTUkCaAhHQKPcs1qnFYN1fZQoaAZHQHG2tQ0oBq9oB00vAWgIR0Cj3Np9iMHbdX2UKGgGR0BynCbsniNsaAdNbwFoCEdAo9zfDziCKHV9lChoBkdAcDNVurIYFmgHTQIDaAhHQKPc/F+d9Ul1fZQoaAZHQG0NNZV4oqloB03pAWgIR0Cj3QfnwG4adX2UKGgGR0BvkEnogV45aAdNtAFoCEdAo91GGqPwNXV9lChoBkdAcUqR6Ww/xGgHTU4BaAhHQKPdg4XGff51fZQoaAZHQHF0Zb6guh9oB01bAWgIR0Cj3jW3KB/adX2UKGgGR0BzK2zXz19OaAdNTgFoCEdAo97LOTq0MXV9lChoBkdAcMh8c+7lJmgHTScBaAhHQKPfBI1+AmR1fZQoaAZHQGy8Hi3ocJdoB0v5aAhHQKPhGKjzqbB1fZQoaAZHQG8hw5FPSD1oB02hAWgIR0Cj4TszuWrwdX2UKGgGR0AREWAPNFBqaAdL12gIR0Cj4YKJ2t+1dX2UKGgGR0Bx6ED/2kBTaAdNOwFoCEdAo+IMX531SXV9lChoBkdAcAIwDNhVl2gHTQ4BaAhHQKPimRujynV1fZQoaAZHQHA2Dt5UtI1oB02YA2gIR0Cj4u5xzaK2dX2UKGgGR0BwtlDBuXNUaAdNNgFoCEdAo+Mo68xsVXV9lChoBkdASH+so2GZeGgHS8ZoCEdAo+MudVea8nV9lChoBkdAcRsdHDrJKmgHTS4BaAhHQKPjLmXgLql1fZQoaAZHQHGD2jXWe6JoB01hAWgIR0Cj46O0kWykdX2UKGgGR0Bwu9AgPmPpaAdNQQFoCEdAo+PS44Ia+HV9lChoBkdAcCc0PH1e0GgHTSIBaAhHQKPkvSqlxfh1fZQoaAZHQHAKSxqwhW5oB01RAWgIR0Cj5M1P3ztkdX2UKGgGR0BLNU7Sy+pPaAdLzGgIR0Cj5QgnlXA/dX2UKGgGR0Bv/0WKuSwGaAdNWAFoCEdAo+cX3UQTVXV9lChoBkdAb09P69CeE2gHTSoCaAhHQKPnTgJkXk51fZQoaAZHQEHIOhCdBjZoB0vcaAhHQKPnUqCpWFN1fZQoaAZHQHKBUihWYF9oB00WAWgIR0Cj54nnuAqedX2UKGgGR0Bxc1N5+pfhaAdNfQFoCEdAo+fLEHdGiHV9lChoBkdAbxkLsKLKm2gHTbECaAhHQKPn688s+V11fZQoaAZHQHLRoRqXWvtoB02LAWgIR0Cj6PH+Q2dedX2UKGgGR0BwozApKBd2aAdNgAFoCEdAo+kWmR/3FnV9lChoBkdAbuPKNhmXgWgHTQkBaAhHQKPpYs8xKxt1fZQoaAZHQHKYVbmlqJxoB01pAWgIR0Cj6Wynk1dgdX2UKGgGR0BsjmRV6u4gaAdNpAJoCEdAo+mwoPTXrnV9lChoBkdAQWZL9MsYmGgHS79oCEdAo+oq6OHWSXV9lChoBkdAcgk+PRzBAWgHTfYBaAhHQKPqMhhYvFp1fZQoaAZHQHH3oJqqOtJoB01YAWgIR0Cj6lONPxhEdX2UKGgGR0BvE6IznA6/aAdNAgFoCEdAo+thXEIgNnV9lChoBkdAcIqEVWS2Y2gHTSICaAhHQKPr0L5ylvZ1fZQoaAZHQHCQdDIBBAxoB00iAWgIR0Cj6+o7muDBdX2UKGgGR0Bx964G2TgVaAdNLwFoCEdAo+ye2sq8UXV9lChoBkdAb1FvKlpGnWgHTesBaAhHQKPsnxy4nWt1fZQoaAZHQDcccJdB0IVoB0vSaAhHQKPssC2c8T11fZQoaAZHQHH2DrAxi5NoB01LAWgIR0Cj7SuearmydX2UKGgGR0BHJX9itq59aAdL3mgIR0Cj7S5Sm65HdX2UKGgGR0BOicWbgCOnaAdLw2gIR0Cj7T43WFvidX2UKGgGR0BugZbILgGbaAdNaQFoCEdAo+1DzshPkHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f002ae091c495a702e090cc2a53c9b24918a7f6ba40c77ab9628c742b4372e4
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a511a7f91710583644b750f9260ae014ea182d771dba2d99f5de5664e396fff
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (169 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.35180849999995, "std_reward": 25.671512815573315, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-14T20:58:40.764758"}