File size: 6,197 Bytes
659f9ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: llama3
library_name: transformers
tags:
- mergekit
- merge
- not-for-all-audiences
base_model:
- Hastagaras/anjrit
- Hastagaras/anying
model-index:
- name: Anjir-8B-L3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.67
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.78
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Anjir-8B-L3
name: Open LLM Leaderboard
---
# ⚡ExLlamaV2 quant of : [Anjir-8B-L3](https://huggingface.co/Hastagaras/Anjir-8B-L3)
> [!note]
> ➡️ **Exl2 version :** [0.1.1](https://github.com/turboderp/exllamav2/releases/tag/v0.1.1)<br/>
> ➡️ **Cal. dataset :** Default.<br/>
> 📄 <a href="https://huggingface.co/Meggido/Anjir-8B-L3-6.5bpw-h8-exl2/resolve/main/measurement.json" download>Measurement.json</a> file.
# ANJIRRR
This model aims to achieve the human-like responses of the [Halu Blackroot](https://huggingface.co/Hastagaras/Halu-8B-Llama3-Blackroot), the no refusal tendencies of the [Halu OAS](https://huggingface.co/Hastagaras/Halu-OAS-8B-Llama3), and the smartness of the [Standard Halu](https://huggingface.co/Hastagaras/Halu-8B-Llama3-v0.3).
GGUF: [**STATIC**](https://huggingface.co/mradermacher/Anjir-8B-L3-GGUF)/[**IMATRIX**](https://huggingface.co/mradermacher/Anjir-8B-L3-i1-GGUF) made available by [mradermacher](https://huggingface.co/mradermacher)
<div align="left">
<img src="https://huggingface.co/Hastagaras/Anjir-8B-L3/resolve/main/anjir.png" width="500"/>
</div>
**Model Details:**
* **Anjrit:** This model is similar to my [Halu Blackroot](https://huggingface.co/Hastagaras/Halu-8B-Llama3-Blackroot) model, but instead of using the standard version, this model uses the OAS version.
* **Anying:** This model is also similar to the Halu Blackroot, but instead of using the model stock, I merged the Blackroot lora manually with a very low alpha.
Both models have downsides. The Anjrit model **lacks coherency**, while the Anying model lacks a **human-like responses**.
**I decided to merge both models with the following method:**
1. First, I compared the response from each layer of both models using the baukit notebook.
2. After comparing both, it seems that around the bottom layer, the Anjrit model is better, perhaps because it is unhinged.
3. From the bottom to the middle layer, the Anjrit is still better, but the Anying seems smarter.
4. At the middle layer, both seem equal, but again, the Anjrit is unhinged, so I prefer this one.
5. From the middle to the top layer, the Anying is better. It is smarter, and the response is more structured.
6. The top layer of the Anjrit model is better since the model itself is orthogonalized, so I prefer this one.
7. Then I performed slerp with the following configuration. I don't know if this is really how the slerp merge works, so let's just say this is an **experimental merge**. Maybe I will try the other merge methods for future experiments
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Hastagaras/anjrit
- model: Hastagaras/anying
merge_method: slerp
base_model: Hastagaras/anjrit
dtype: bfloat16
parameters:
t: [0.12, 0.17, 0.29, 0.44, 0.26]
```
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Hastagaras__Anjir-8B-L3)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.07|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot) |84.15|
|MMLU (5-Shot) |67.67|
|TruthfulQA (0-shot) |52.67|
|Winogrande (5-shot) |78.61|
|GSM8k (5-shot) |67.78|
|